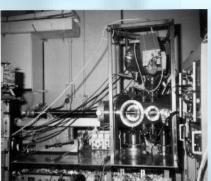
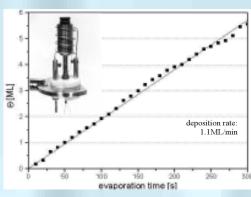
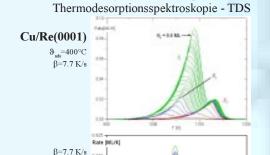

Freie Universität Berlin

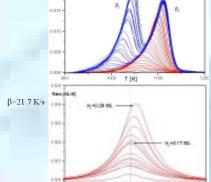

Institut für Physikalische und Theoretische Chemie

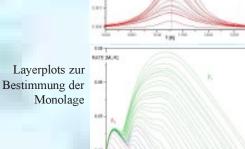
R. Wagner*, D. Schlatterbeck und K. Christmann Takustr. 3, 14195 Berlin, Tel. 030/8383751, e-mail: locke@chemie.fu-berlin.de

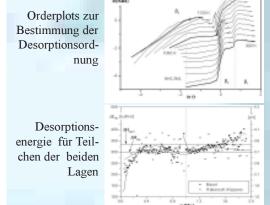
FU Berlin


Kombinierte TDS-, LEED-, XPS- und AES-Untersuchungen von Kupfer auf einer Re(0001)-Oberfläche

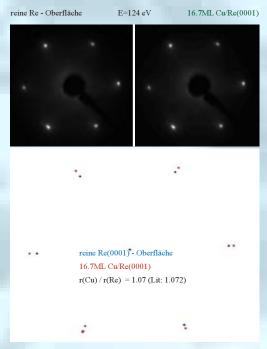


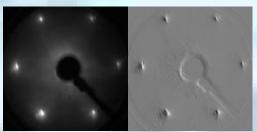

Der Probenhalter mit Probe

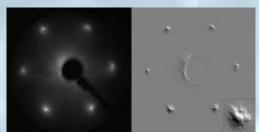


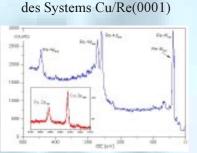

Präparation der dünnen Kupfer - Filme

Die UHV - Apparatur Thermal Programmed Desorption - TPD

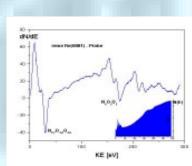




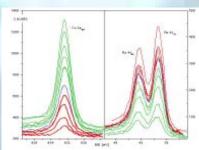

LEED - Bilder des Systems Cu/Re(0001)


14 x 1 - Überstukturreflexe im Bereich von etwa 0.7ML bis etwa 3ML

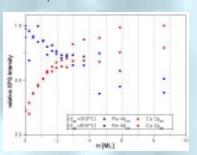
1 ML - Kupferschicht nach 10 min Tempern auf $700^{\circ} C, \, E = 105 eV$



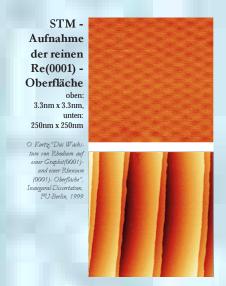
2.6ML - Kupferschicht nicht getempert, E=126eV

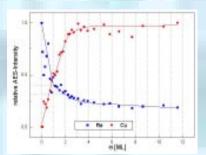

Elektronenspektren

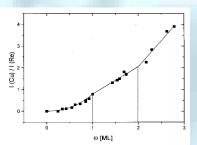
Röntgenphotoelektronen - Übersichtsspektrum (XPS)



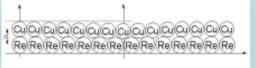
Augerelektronen - Übersichtsspektrum (AES)


XP - Spektren des Systems Cu/Re(0001)


direkte XP - Spektren


Intensitäten der XP - Spektren vor und nach dem

Auger - Spektren des Systems Cu/Re(0001)


Intensitäten der differenzierten Auger - Spektren

Darstellung des Intensitätenverhältnisses

•	äußerst geringe bis keine elektronischen Wechselwirkungen zwischen Adsorbat Kupfer und Substrat Rhenium
•	bis etwa 0.7ML bei niedrigen Temperaturen (Raumtemperatur) fraktale, bei höheren Temperaturen (ca 700K Desorptions-

- temperatur) kompakte Inseln • dazwischen sehr bewegliche (2D-Gas-) Teilchen, Ausbildung
- eines Phasengleichgewichtes ($T_c \approx 1110K$) • optimale Adsorptionsplätze mit Gitterkonstante des Rheni-
- danach bis 1ML (uniaxiale) Kompression des Kupfers mit Ausbildung einer Inkommensurablen Koinzidenzstruktur (Wellung der Oberfläche: △d=14%, λ=14 Substratatome)
- Ausbildung einer zweiten Lage Kupfer, nachdem die erste ab-
- bei erhöhten Temperaturen (>1100K) Interlagen- Diffusion
- ebenfalls Phasengleichgewicht möglich
- Aufwachsen von Kristalliten (Quasi SK Wachstum)
- Mehrere Lagen gleichzeitig offen
- durch Tempern kann diese offene Struktur verdichtet werden

STM -Aufnahme hexagonaler Pyramiden aus Kupfer-Atomen (bis zu 10 Lagen offen)

Wellung der Oberfläche:

Amplitude ∆d=14%;

Wellenlänge λ=14

	TDS	LEED	XPS	AES
Submono-	Spektrenformwechsel	p(1x1)-	linearer Anstieg	linearer Anstieg
lagen-	gem Anstiegsflanke ->	Grundgitterreflexe	der Intensitäten	der Intensitäten
bereich	konst. Peakmaximum	Ausbildung der (14x1)-		
	Ordnungswechsel	Überstrukturreflexe	durch Tempern	exponentieller An-
	(1>) 0>1	durch Tempern bes-	kein Unterschied	stieg der Inten-
	ΔE_{des} -Anstieg	sere Auflösung		sitätenverhältnisse
Abschluß	zwei Zustände	Abschwächung	Knicke bei	Knicke bei
des	β_2 und β_3 mit	der (14x1)-	2ML und 3ML	2ML und 3ML
Lagen-	gleicher Bedeckung	Überstrukturreflexe	durch Tempern	
wachstums			kein Unterschied	
3D-	β_1 -Zustand	p(1x1)- Cu-Reflexe	exponentieller Verlauf	Verlauf der
Wachstum	mit 0. Ordnung		der Intensitäten	Intensitäten
	ΔE_{des} in Höhe der		durch Tempern	zunächst exponentiell
	Sublimationsenthalpie		Intensitätsverlußt	dann konstant