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A new and simple rate expression incorporating mutual interaction between reactants is present-
ed within the framework of absolute-reaction-rate theory. The expression is derived by applying a
simplified model of the lattice-gas Hamiltonian and working with it in the moiecular-field approxi-
mation. Applications to the results of zero-order desorption spectra occurrinfg in isothermal- and
thermal-desorption measurements are discussed. Direct extension of the pfesent results to the
general inhomogeneous reactions suggests that the reaction rate would be zerp order whenever an
adsorptive reactant system is in the two-phase or multiphase coexistence region.

PACS numbers: 82.65.Jv, 05.20.Dd, 64.60.Cn, 82.20.Db

At the present status of theoretical development in
the reaction-rate theory, the conventional rate formula
that one can use in analyzing experimental results has
been confined to the simple Arrherius one.! And in
almost all the cases, disagreement between the experi-
mental and theoretical values has been rendered to the
neglect of interaction between reactants.’? The initial
theoretical attempt to take the interaction faithfully
into account was devised by Toya.? Subsequently,
many attempts have been made to treat his formula-
tion as applicable to a variety of systems.* However,
none of them could derive a simplified rate expression
nor could they formulate expressions in a form as
compact as that of the Arrhenius equation. Hence,
these expressions are too unwieldy to apply to experi-
mental situations directly and therefore have not
gained wider acceptance.! In the present paper, a new
and very simple rate expression is derived which expli-
citly incorporates the interaction between reactant par-
ticles, and applied for the simple case of unimolecular
desorption as an example.

Consider the system composed of mutually interact-
ing particles adsorbed on the surface of a substrate,
which provides a potential well for the adsorbates. We
specify a coordinate of surface normal z, with z=0 at
the substrate surface. At some distance z=z# >0
from the surface, we assume that the potential energy
becomes maximum (or attains its flatness) and the lo-
cal density of particles becomes minimum, i.e., the
plane usually called the activated complex or the tran-
sition state.l:3 -

According to absolute rate theory, the rate of
desorption R per unit time and unit area is given by
the density at the transition state, n*, and is written as

R =vn?, ¢))

where v is the frequency factor of desorbing particles
at the transition state. Starting from the original equa-
tion for desorption (1), we then calculate the density

© 1985 The American Physical Society

n*, applying the idea of the grand canonical ensemble.®
ble.® It is well known that the inclusion of interaction
becomes much easier in a treatment of the grand
canonical ensemble than that of the canonical ensem-
ble which has been usually used in the conventional
reaction-rate theory.* ¢

To simplify the modeling, we take only two layers of
the two-dimensional (2D) lattice-gas system” 8 into ac-
count, i.e., the first layer of adsorbates (adsorbate
layer) residing mostly at the bottom of the potential
well and the one at the transition-state layer (transition
layer).

The Hamiltonian for this lattice-gas system is
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where 7 is temperature, and e, v, and u are the
nearest-neighbor interaction energy, potential energy,
and chemical potential, being multiplied by a minus
sign, respectively; the double-dagger superscript dis-
tinguishes quantities in the transition layer from those
in the adsorbate layer; the cg:cupation operator #; is
equal to 1 (0) when site i is occupied (empty); the
summation X;; exténds over the first nearest-
neighbor pairs of sites in each layer. With the use of
the simplest molecular-field (or Bragg-Williams) ap-
proximation,®?® one can derive the self-consistent
equations for layer density » and n* as follows:

[aen —v+ul/r=Inln/(1—n)], 3)
laent— vt + wl/r =1nln¥/ (1= nH], (4)

where a is the coordilgnation number of the nearest
neighbors in each 2D lattice-gas layer, and is equal to 6
for the triangular lattice which is considered in this pa-
per.
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Since the density at the transition layer, n*, is very
small as a result of the basic assumption of absolute
rate theory, Eq. (4) is approximated as

[—v*+ul/r=In(n%). &)
Inserting it into Eq. (1), we obtain a rate expression
R=vexp[(—v*+p.)/1'], 6)

and further eliminating u between Egs. (3) and (6),
which means that the two layers are in equilibrium, we
finally obtain the objective formula

R=v[n/(1~ n)lexpl — (aen+ Ey)/7], @)

where Eq=p*—y is the activation energy for desorp-
tion. If the interaction between the particles in the ad-
sorbate and transition layers is added through the term
€3,(;5y M1, to the Hamiltonian, Eq. (1), then the factor
ae in Eq. (7) is replaced by (ae — be), where € and b
are the interaction energy and the coordination
number of nearest neighbors between the two layers.

It should be noted that the effect of interaction ap-
pears through the variation of the chemical potential “
of the whole system, as seen from Eq. (6). Toya,’
however, considered that the short-range correlation at
the transition state might be more effective for the
complex behavior of the thermal-desorption spectra of
hydrogen molecules from W(100), and treated the
lattice-gas Hamiltonian in the Bethe-Peierls approxi-
mation, which is a better approximation than the
present molecular-field approximation. However, he
could not deduce a rate expression as simple and expli-
cit as that of Eq. (7). It should be noted that Eq. (7)
may be understood as a modified form of the regular
Arrhenius-type formula with the activation energy be-
ing increased by the amount aen, and also with the
preexponential factor divided by the factor (1— r).

In the low-density limit, »— 0, where the adsor-
bates can be viewed as a noninteracting ideal lattice
gas, Eq. (7) reduces to the Arrhenius-type first-order
rate expression,

R=vnexp(—Ey7), (8)

which is a reasonable limiting form for our lattice-gas
system.

In the high-density limit, n— 1, Eq. (7) diverges
because of the presence of the term 1/(1— n), which
illustrates the fact that in that limit the particles are
crammed most heavily in the first layer and which re-
flects in the divergence of chemical potential, u — oo,
and ultimately causes the divergence of the density at
the transition layer. The appearance of this kind of
term is always expected to occur in the reaction system
whereby the density of adsorptive reactants is confined
from reaching the uppermost value. From the deriva-
tion presented above, it is clear that the rate expres-
sion, Eq. (7), is not valid in the higher-density region

2160

near n=1, where multilayer adsorption® would be
present. This restriction of the validity is a shortcom-
ing of the simplified two-layer model employed. Ex-
tension to the multilayer lattice-gas model can be
readily made, however, at the cost of the simplicity of
the rate expression.

The kinetic rate equation for the desorption is writ-
ten as ’

—dn/dt=v[n/(1—nlexpl— (aen+ Ep)/r]. (9)

In the following examples, I integrate Eq. (9) numeri-
cally, and obtain isothermal-desorption spectra
(ITDS), and thermal- (or flash) desorption spectra
(TDS).

In the case of attractive interaction (e > 0), two-
phase coexistence occurs in the low-temperature re-
gion T < 7., where 7,/e= % is the critical temperature
for the 2D triangular lattice-gas system.® In the two-
phase coexistence region, the chemical potential
remains constant,>® given by

w'=—aef2+v (10)

where the asterisk denotes the quantity at the two-
phase coexistence. From Eq. (6), the constancy of the
chemical potential u=pu* during two-phase coex-
istence reflects the constant desorption rate, i.e., the
zero-order desorption kinetics which are observed ex-
perimentally.’!! If one extends the above discussions
directly, one can arrive at the universal rule that the
reaction rate would be zero order whenever the system
remains in the region of two-phase or multiphase
coexistance of adsorptive reactants, the situation ex-
pected to occur frequently in inhomogeneous catalytic
reactions. The densities at the boundaries of two-
phase coexistence in the 7 vs # phase diagram are
given by solution of the following equation for n*,58

ae(n*— )/ v=Inln*/(1=n")]. (11)

The relevance of the theory developed is examined
by applying it to the experimental ITDS for
Xe/CO/W(110)!% shown in Fig. 1(a). In the nearly
flat part A-B indicated in the figure, the zero-order
desorption operates, and outside of the flat part the
quasi-first-order one does. Calculations of ITDS’s us-
ing Eq. (9) are performed for various fixed tempera-
tures with the initial density #;,;,=0.98 and are illus-
trated in Fig. 1(b). Comparing overall shapes of the
calculated ITDS’s [Fig. 1(b)] with the experimental
ones [Fig. 1(a)], we can determine the fitted parame-
ters of 7=1.25¢=155.3 K, which gives the values of
interaction energy e =0.088 kcal/mol, and the critical
temperature 7.=66.4 K. Furthermore, equating the
experimental and calculated times when zero-order
desorption terminates (the point B in Fig. 1), we ob-
tain 0.775¢5=43.0 sec, where the scaling factor for the
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FIG. 1. (a) Experimental ITDS for Xe/CO/W(110) by Opila and Gomer (Ref. 10). The nearly flat part A-B indicates the
zero-order desorption regime. (b) Calculated ITDS’s for the various temperatures indicated. The unit of desorption rate R is
set at =+ and time is scaled by the unit of fo=exp[ — (Eo+a/2)/7]. The flat part at R =1 indicates zero-order kinetics

given by Egs. (6) and (10).

abscissa is fg=expl~ (Eg+ a/2)/7]. The value of the
activation energy Ey deduced is 3.22 kcal/mol, which
is in good agreement with the estimated value of 3.1
kcal/mol, obtained from the first-order desorption
spectra of Xe/CO/W(110).1°

Using these parameters, we next compute the TDS.
Figure 2(a) shows the calculated TDS’s starting with
various initial coverages for a typical heating rate of
B=25 K/sec, and a frequency factor of v=1x10!3
sec™!. Figure 2(b) shows the corresponding TDS tra-
jectories in the temperature versus density phase dia-
grams.!! ““The common leading edge,”” one of the
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characteristic features of zero-order desorption kinet-
ics, in which spectra starting with different initial den-
sities all coincide in the ascending portion of the
TDS’s, is seen in the figure.>*!! Within the two-phase
coexistence region in Fig. 2(b), the zero-order desorp-
tion kinetics dominates, but outside, the quasi-first-
order one does.  When each trajectory in Fig. 2(b)
crosses the phase boundary out to the single-phase re-
gion, the corresponding ITDS in Fig. 2(a) starts to de-
viate from the common leading edge; the crossing
points are denoted with arrows. Inclusion of interac-
tion gives rise to the variation of peak temperature
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FIG. 2. (a) Calculated TDS’s and (b) their trajectories in temperature vs density phase diagram, with initial densities 7n
(the arrows indicate the crossing points from the zero-order to the quasi-first-order desorption kinetics). The parameters used
are e =0.088 kcal/mol, Ey=3.22 kcal/mol, and a =6. Thin lines, the boundary of two-phase coexistence; dotted line, the

ITDS trajectories of Fig. 1(a).
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with initial coverage as clearly seen in Fig. 2(a), which
is the feature usually observed in experiments!? but
not explained in the simple Arrhenius-type first-order
expression.’

In summary, a simplified rate expression for uni-
molecular desorption of interacting adsorbate particles
is reported on the original basis of the absolute rate
theory. The resultant desorption rate reduces to the
Arrhenius one in the low-density limit, and diverges as
density approaches the upper-limit value. The
relevance of this expression is examined by applying it
to the zero-order desorption. The conclusion derived
that the constant chemical potential in the two-phase
coexistence region brings about zero-order desorption
kinetics is expected to hold in more general cases. Ex-
tension to more complex reactions will be the subject
of future communications.
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