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Abstract

This article gives a survey of phase transitions in adsorbed ®lms on well de®ned surfaces of square and rectangular

symmetry of the lattice. The discussion concentrates on the effects of periodic changes of the adsorbate±substrate potential on

the structure and thermodynamic properties of adsorbed ®lms. Different theoretical approaches are brie¯y reviewed, with an

emphasis on those which explicitly take into account ®nal corrugation of the surface potential. Several aspects of statistical

mechanical description of phase transitions in surface layers, such as order±disorder, melting, commensurate±incommensurate

transitions in monolayer ®lms as well as transitions connected with the formation of multilayer ®lms (layering and wetting)

are presented. Theoretical discussion is followed by the presentation of numerous experimental and computer simulation

studies for various systems. Then the properties of monolayer ®lms of molecular adsorbates on different substrates of a square

and rectangular symmetry is discussed. It is pointed out that computer simulation methods provide a very powerful tool which

allows to probe the inner structure of such systems and provides direct information concerning both orientational and

positional ordering. # 2000 Elsevier Science B.V. All rights reserved.

Keywords: Computer simulations; Equilibrium thermodynamics and statistical mechanics; Surface thermodynamics

1. Introduction

Phase transitions and ordering phenomena in adsorbed ®lms formed on well de®ned crystal surfaces
have been attracting a great deal of interest for many years [1±5] and the activity in this ®eld is still
growing. The literature which presents the results of both experimental and theoretical studies is
overwhelmingly abundant and the achievements are outstanding. The progress in this ®eld has gained a
particular impetus due to introduction of several powerful experimental techniques (e.g., neutron
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scattering [6±10], various forms of electron spectroscopy [11±20], light particle, e.g. helium, scattering
[21±23], and many others [24±28]), the extensive use of computer simulation methods (Monte Carlo
and molecular dynamics) [5,29±36] and, last but surely not the least, owing to very intensive theoretical
studies [1±3,37±46], for which the discovery of rich two-dimensional world of phase transitions and
substrate induced forms of order in adsorbed layers has become a challenge, but also has created a
unique opportunity to verify various ideas and predictions stemming out of theoretical work.

The systematic investigation of surface phases and surface phase transitions in adsorbed layers began
in the late 1960s [1,47±49] just after the development of the technology for the production of the
graphite substrate with highly uniform surface [50]. Already very early experiments of Thomy and
Duval [47±49], who measured adsorption isotherms of simple gases (krypton, xenon, methane) on
graphite at low temperatures, revealed that monolayer ®lms exhibit remarkably similar phase behavior
to what is so well known from everyday observations of three-dimensional bulk matter. In particular, it
was clearly demonstrated that the two-dimensional counterparts of gas, liquid and solid phases do exist.
However, this simple picture stemming from those experiments did not last long. Over the years,
hundreds of papers reporting the new ®ndings were published and particularly extensive studies were
carried out for the ®lms formed on graphite [51±56]. It soon became clear that several phenomena
observed in adsorbed ®lms do not have simple counterparts in the three-dimensional bulk matter. The
mis®t between the lattice spacing of the substrate surface and the preferred lattice spacing of the
adsorbate (determined by the interactions between the adsorbed particles) leads to the formation of
incommensurate phases, axially ordered phases and other forms of ordering speci®c to surface systems.

Experimental achievements strongly stimulated theoretical studies and, without doubt, greatly
contributed to the development of theories for two-dimensional melting [37±39,57±60], commensu-
rate±incommensurate transitions [33,42,61±63], ®nite size scaling theory [5,64±66], theory of wetting
and roughening phenomena [44,45,67±71] and the theory of critical phenomena in systems of low
dimensionality [72,73]. All those experimental and theoretical efforts were also vastly supported by
computer simulation studies [29±36,74±84] that greatly contributed to our present understanding of
processes and phenomena occurring at surfaces and in the adsorption systems. At present, our
knowledge and understanding of the phase behavior in many experimental systems seem to be quite
deep. Phase diagrams for noble gases and simple molecules adsorbed on graphite are now well
established [53,55] and the inner structure of many phases as well as the mechanism of phase
transitions are presently already known.

A natural structure of a two-dimensional dense phase on a `̀ ¯at'', noncorrugated surface is a
hexagonal packing of molecules which results from the obvious tendency of the system to assume the
most favorable structure, which minimizes the free energy. At low temperatures the entropy
contribution to the free energy is rather small, and it is the potential energy contribution that dominates
the system free energy. In the case of hexagonal lattices, the intrinsic lattice constant for the ®lm,
however usually is different from the distance between the adjacent minima of the potential wells at
different surface cells, but nevertheless, at least the symmetry of the substrate potential and the
symmetry of the adsorbate preferential structure are the same. Thus, for a small mis®t, even a slight
corrugation of the substrate potential may considerably stabilize the commensurate phase [1,53]. For a
large mis®t, incommensurate phases are formed and these are usually described within the domain wall
formalism [61,85±90].

One should also note that the surface corrugation of the graphite basal plane, as well as of the dense
(111) planes of various metals, is quite small. It has been even argued [91,92] that the ®lms on some
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metals, e.g., argon, krypton and xenon adsorbed on Ag(111), behave practically in the same way as the
adsorbed layers formed on a ¯at, noncorrugated surface.

The above picture changes completely when one considers crystal planes of lower density with the
surfacial lattice of other than hexagonal symmetry. In particular, for the surfaces characterized by
square or rectangular symmetry, e.g. the (100) and (110) planes of f.c.c. crystals, one expects to ®nd
many new phenomena due to speci®c interplay between the adsorbate±adsorbate and adsorbate±solid
interactions. Although the activity in this ®eld is also very high on both the experimental
[13,14,18,20,93±111] as well as theoretical [15,42,112±133] sides, our understanding of the properties
and behavior of ®lms adsorbed on such surfaces is considerably less advanced. The reason for such a
situation is that these systems exhibit much higher complexity of interactions, which in case of metallic
materials are still not quite well understood. The variety of possible ordered phases, as well as Ð in
many cases Ð unclear nature of the phase transitions between them, makes the study very exciting but
also dif®cult and tedious.

In the cases of square and rectangular lattices, the surface corrugation potentials exhibit usually much
higher periodic variations [1] and there is a natural difference in the symmetries of such lattices and the
preferred symmetry of the adlayers. Thus, the competition between the adsorbate±adsorbate and the
adsorbate±adsorbent interactions must be much stronger and may lead to the formation of the new types
of ordering in the ®lm. Indeed, several experimental studies have revealed the existence of the higher
order commensurate phases [110,134] and axially ordered phases [15,20,18,97] in addition to the
registered and incommensurate (¯oating solid) phases. The mechanisms of phase transitions between
all those different types of surface phases are quite complex and are not so well described and
understood as in the case of hexagonal surfaces.

In this review, we tackle several questions concerning general aspects of the formation and properties
of the adsorbed ®lms deposited on square and rectangular surfaces. Our discussion is primarily directed
towards the presentation of recent studies performed for such systems with the help of computer
simulation methods. In particular, we shall concentrate on the investigation of various phase transitions
occurring in adsorbed layers. It seems appropriate, however, to include also in the discussion a general
overview of surface phase transitions, emphasizing their speci®city, as compared to the behavior of
three-dimensional bulk uniform systems, and the role of the substrate surface structure on the behavior
of adsorbed ®lms. The abundance of various phenomena occurring in surfacial layers and evidenced by
numerous experimental and computer simulation studies, renders it necessary to exclude several
important problems from the discussion. Thus, we shall not consider here adsorption on reconstructed
surfaces as well as the adsorbate induced surface reconstruction processes. Also, the kinetics of domain
growth and dynamical aspects of adsorption phenomena will not be covered here. Instead, we will
concentrate on the in¯uence of the surface corrugation potential on the equilibrium properties of
monolayer as well as multilayer ®lms.

In Section 2 we will introduce some basic de®nitions and notation and brie¯y discuss some
fundamental problems of the interactions between the adsorbate and the solid substrate, as well as
between the adsorbed species. The appropriate description of the molecular interaction potentials is
essential for computer simulations, but it is also of great general importance. In the same section we
will recall some early mean-®eld type theories developed to describe adsorption on crystalline surfaces
exhibiting ®nite periodic variations of the gas±solid potential. Those attempts must be now considered
as naive but we think that the presentation of the advance of our knowledge requires the mention of
those early attempts. Finally, after this historical introduction, we will present the basic models that will
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be discussed in the following parts of this article. Section 3 is devoted to the general discussion of
theoretical ideas developed in order to describe various surface phases and surface phase transitions.
Then in Section 4, we will concentrate on the computer simulation studies performed within the general
framework of lattice gas models for both monolayer and multilayer adsorbed ®lms. It will be
demonstrated that even such idealized models provide very valuable information and in many cases
lead to the results which are in very good agreement with the experimental data, as well as produce new
insights.

In Section 5, we will discuss the problems of adsorbed ®lms formed on crystalline surfaces exhibiting
®nite corrugation of the surface potential. Here, we shall ®rst brie¯y survey the experimental situation,
emphasizing the studies pointing to a direct correlation between the structure of surface phases and the
corrugation potential. Then, we will concentrate on the results of the computer simulation studies
performed for model as well as real systems. The use of computer simulations for investigation of the
interplay between the surface corrugation and different forms of ordering in adsorbed layers is
particularly attractive. In contrast to real systems, in computer simulation one can arbitrarily change the
interaction potentials and the effects of surface corrugation in order to examine various regimes in
which different forms of ordering are stable. One particularly interesting problem is the mechanism of
the melting transition in adsorbed ®lms. Experiments and theory show that it is still a very controversial
question. We shall brie¯y consider this topic and discuss recent progress achieved due to the application
of computer simulation methods. Although our interest in this section is mainly directed towards the
problems of monolayer adsorption, we shall consider also some aspects of the effects connected with
the formation of thicker ®lms and the in¯uence of higher adsorbed layers on the structure of the ®rst
adsorbed layer, adjacent to the solid surface. Finally, we will also discuss the properties and structure of
®lms formed by nonspherical molecules adsorbed on crystalline surfaces of square and rectangular
symmetry.

In the concluding Section 6, we will brie¯y summarize and discuss the material presented in this
article and point to some still open questions that require further studies.

2. Preliminaries

2.1. The gas±solid corrugation potential

In the most general situation, the surface of a solid material may have quite complex and irregular
structure, which in adsorption literature is usually termed as heterogeneous [135]. In such cases, also
the adsorbed ®lms exhibit a high degree of nonuniformity and do not possess well de®ned structures.
Thus, the surface heterogeneity can completely destroy any form of order, as well as any phase
transitions in the adsorbed ®lm [136]. This is the fundamental reason why the attempts to observe
experimentally phase equilibria in adsorbed layers were not successful until the methods of preparation
of materials with highly homogeneous surfaces were developed [50,51,137,138]. Even so, the
experimental study meets several problems due to the always present residual heterogeneities resulting
from the limited size of crystallites, the defects of the crystal lattices, the presence of steps, etc. All
these imperfections are known to in¯uence the internal structure of the ®lm and to affect particularly
the surface phase transitions, leading to rounding and shifting of the transition region [46]. Among
the well understood problems are the ®nite size effects [65] and the adsorption at stepped surfaces
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[139±141], so characteristic to vicinal planes of metal crystals [142]. Some aspects of the ®nite size
effects will be discussed later in the following section.

Here, we assume that the surface exposed to the gas phase is a perfect single plane of a crystal. In
such a simple situation we can fully characterize the surface lattice by its unit lattice vectors a1 and a2

Fig. 1. The interaction of the gas atom with the crystal can be represented by the potential v�s; z�, where
s � �x; y� is the two-dimensional vector specifying the location of the adatom in the plane parallel to
the surface and z is the distance from the surface, located at z � 0 and assumed to run through the
centers of the uppermost layer of the crystal atoms. The periodic structure of the crystal surface causes
the potential v�s; z� also to be a periodic function, such that

v�s; z� � v�s� k1a1 � k2a2; z�; (2.1)

where k1 and k2 are integers. This periodicity property of the potential v�s; z� has prompted Steele [143]
to represent v�s; z� in the form of the Fourier series

v�s; z� � v0�z� �
X
q 6�0

vq�z�exp�iq � s�; (2.2)

where v0�z� is the interaction potential averaged over the entire surface and the sum runs over the
nonzero two-dimensional reciprocal lattice vectors q:

q � n1b1 � n2b2; (2.3)

where b1 and b2 are the basic reciprocal lattice vectors and n1 and n2 are integers.
The magnitudes and the functional dependence upon z of the Fourier coef®cients vq�z� are primarily

determined by the nature of interactions in the system. Steele [143] has assumed the gas±solid
interaction to be a sum of interactions between the adsorbate atom and all the individual atoms forming
the crystal, with the pair potential given by the (12,6) Lennard-Jones function

u�r� � 4egs

sgs

r

� �12

ÿ sgs

r

� �6
� �

; (2.4)

where sgs and egs have been determined using the standard mixing rules [144]

sgs � 1
2
�sgg � sss� and egs � �����������

eggess
p

(2.5)

and sgg�sss� and egg�ess� are the Lennard-Jones potential parameters for the gas (solid). Using the above
assumptions Steele has derived analytic expressions for v0�z� and vq�z� that apply to surfaces of
different symmetry.

Fig. 1. Top view of the f.c.c. (100), (110) and (111) surface unit cells showing the unit cell vectors a1 and a2. The lengths of

the unit cell vectors for (110) and (111) surfaces are expressed in units of a1 for the (100) surface.
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The usefulness of the expansion (2.2) depends primarily on how fast it converges. It turns out that the
convergence of the series is quite fast for the graphite basal plane and for (100) and (111) faces of the
f.c.c. crystal [131,143]. On the other hand, for the (110) plane of the f.c.c. crystal it is necessary to
include signi®cantly more terms in order to obtain reliable results [133].

The expressions for the Fourier coef®cients derived by Steele have rather limited application to real
systems, since the Lennard-Jones potential is not the best choice for the representation of two body
interactions in adsorption on ionic crystals, e.g., NaCl and MgO, or on metals.

An important ingredient of the potential ®eld above the surface of an ionic crystal is the electric ®eld
which polarizes the adsorbate [145]. Thus, the effective interaction between the adsorbate atom, or
molecule, and the substrate may be considerably different from that resulting solely from the van der
Waals-like forces. In some cases the presence of an electric ®eld causes that for different adsorbates the
potential minima (adsorption sites) correspond to different positions over the surface lattice unit cell, as
it was found for simple atomic (rare) gases adsorbed on NaCl and KCl [146]. The situation becomes
much more complex for molecular adsorbates. In such cases, the dipole, quadrupole as well as higher
multipole moments are often a primary source of interactions determining the arrangement of
admolecules over the surface, as well as their orientations [23,55,147,148].

In the case of metallic substrates, the problem of the evaluation of the depth, as well as the shape (i.e.,
corrugation) of the holding potential is particularly dif®cult, and in this case a simple model based on
the van der Waals atom±atom interaction is completely inadequate. Actually, we usually do not have at
our disposal any simple analytic expression for the gas±metal interaction potentials. Therefore, one
must rely on experimental estimations [149±151] and available ab initio calculations for some systems
[152,153]. Among the experimental methods allowing to probe the depth as well as the corrugation of
the surface potential we just mention here the atomic helium scattering [22,150,151] and the inelastic
neutron scattering [154]. The problem with the atomic helium scattering is, as observed by Kern and
Comsa [22], that the helium atoms experience the corrugation of the repulsive part of the interaction
potential, while the adsorbate atoms feel the corrugation of the attractive potential, and the resulting
potential wells. Besides, one cannot assume that the corrugation felt by small and light helium atoms is
the same as observed for heavier and larger adsorbate atoms. The potential barriers between adjacent
minima are, even for the van der Waals forces, determined by the relative size of the adsorbate and the
surface lattice cell and by the strength of the gas±solid potential given by the parameter egs.

However, the use of inelastic neutron scattering experiments to determine the properties of the
binding potential has been shown [154] to give quite reliable results.

Coming back to the problem of the gas±metal interaction potential, we should note that recent
experimental [155] and theoretical [152,153] studies have demonstrated that even the closed packed
faces of metal crystals, e.g. Pt(111), show quite strong periodicity of the surface potential, against a
wide-spread belief [91,92] that such surfaces can be considered as essentially noncorrugated. The self-
consistent Hartree±Fock [152] and ab initio [153] calculations pointed out that the hybridization
between occupied rare gas orbital and empty d-orbitals of transition metals considerably enhances the
surface corrugation effects. On metals, similarly to ionic crystals, the most favorable sites are not
always located over the centers of the surface unit lattice cell, but may correspond to positions directly
over the surface atoms, as found for Xe/Pt(111) system [22], as well as to other positions.

In fact, there are not so many direct and reliable estimations of the surface corrugation potential,
apart from rather well known examples of simple gases on graphite [156], lamellar dihalides [138], and
on some close packed metal surfaces [22]. It should be noted that even in the case of simple gases
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adsorbed on graphite, for which the interaction potentials are believed to be known quite well, it turns
out that the corrugation effects are probably higher than obtained from theoretical calculations. It has
been demonstrated by computer simulations [157±162] that in order to obtain a good agreement with
experimental data the periodic variations of the surface potential need to be higher. To take this effect
into account, the expression (2.2) has been modi®ed [157] by introducing the adjustable `̀ corrugation
parameter'' Vb, so that Eq. (2.2) takes the following form:

v�s; z� � v0�z� � Vb

X
q 6�0

vq�z�exp�iq � s�: (2.6)

For the values of Vb > 1, the effects due to the corrugation are enhanced with respect to those predicted
by Eq. (2.2), while for Vb < 1 they are weakened.

In many cases, to study the basic effects of surface potential corrugation and surface lattice symmetry
it suf®ces to retain only very few leading terms in the expansion (2.2) (or (2.6)) and consider the
Fourier amplitudes as adjustable parameters. A good example of such an approach is the study
performed by Bruch and Venables [112], who considered the conditions that must be satis®ed by the
system geometry and the binding potential in order to stabilize uniaxially ordered structures in
monolayer ®lms. The above assumption is justi®ed by the known property of the Fourier coef®cients
vq�z�, which usually decay rapidly with jqj and z. In many cases this decay is exponential [143], i.e.,

vq�z� / exp�ÿjqjz�: (2.7)

From the above property of the corrugation potential, we immediately conclude that its direct effect on
the admolecules located beyond the ®rst layer is bound to be very weak, if any at all. It does not mean,
of course, that the structure of the second and higher layers is unaffected by the properties of the surface
potential. The attraction between admolecules and the surface is responsible for the formation of
subsequent adsorbed layers and its strength is a chief factor determining the ®lm growth mode [43], as
well as internal structure of particular layers. The effects due to the surface corrugation are transmitted
to the higher layers through the interaction with the admolecules from the ®rst layer, which are under a
strong in¯uence of the surface corrugation potential. These effects have been demonstrated by the
molecular dynamics simulation of Phillips and Shrimpton [162], as well as by the Monte Carlo study of
Patrykiejew et al. [63,163].

The most pronounced effect of the corrugation potential is the often observed formation of ordered
structures of the symmetry determined by the geometry of the surface lattice, as will be discussed in the
following parts of this article, in which we wish to elucidate the effects of the corrugated potential in
some model systems, emphasizing that ambiguities hampering the interpretation of experimental
systems Ð such as the possible effects of the aforementioned surface steps Ð are absent and the
substrate surface is strictly ideally periodic without any defects. Of course, we shall also invoke several
examples of experimental studies and try to show that both theory and computer simulations lead to
new insights and allow for better understanding of experimental observations.

2.2. Basic theoretical models

The properties and structure of adsorbed ®lms are controlled by the combined effects due to
admolecule±admolecule and admolecule±substrate interactions as well as by the imposed thermo-
dynamic constraints (speci®ed temperature, ®lm density, bulk gas pressure). Of course, in real
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situations, as well as in computer simulations, the effects due to ®nite size of the surface may
considerably affect the structure of adlayers [63], but we shall not discuss such problems here.

In general, at low temperatures the adsorbate±adsorbate interaction tends to enforce the formation of
hexagonal close-packed (h.c.p.) solid phase in monolayer ®lms, while the corrugated admolecule±
substrate potential favors the formation of registered structures. A simple criterion enabling to
classify the adsorbed ®lms with respect to their structure has been developed by Park and Madden
[164]. Assuming that the substrate surface lattice unit cell vectors are a1 and a2 and the overlayer
unit cell is characterized by the unit vectors e1 and e2, the relation between these two sets can be
written as

e1

e2

� �
� a11 a21

a21 a22

� �
a1

a2

� �
: (2.8)

Park and Madden have classi®ed the adsorbed layers with respect to the behavior of det�aij� and singled
out three cases. The ®rst case groups all systems for which det�aij� is an integer. This situation
corresponds to the registered or commensurate adsorbed ®lms. The second case involves the situations
in which det�aij� is a rational number. When this condition is satis®ed the adsorbed ®lm forms the so-
called `̀ high-order'' commensurate phase, with only a certain fraction of adatoms located directly over
the adsorption sites. Finally, when det�aij� is an irrational number (case three) the adsorbed layer is
incommensurate with the substrate surface lattice. The above classi®cation parametrizes the adsorbed
layer structure with respect to the relative sizes of the surface and adlayer unit cells. The area of the
surface unit lattice cell is given by a1 � a2, and the area of the adsorbed layer unit cell is equal to
e1 � e2, so that det�ai;j� is equal to the ratio of these two areas. A more detailed discussion of all the
above cases is presented in Section 3.

The criterion of Park and Madden vastly oversimpli®es the reality. The distinction between the
incommensurate and the high-order commensurate phases may cause problems, as it is usually possible
to approximate an irrational number by a suitably chosen rational number that falls into the region of
experimental resolution. Aubry [165] has even proposed to consider any incommensurate adsorbed
layer as a suf®ciently high-order commensurate phase. When the conditions change and the density of
the ®lm increases or decreases, it is supposed that the resulting changes in the ®lm structure are due to a
series of ®rst-order transitions between different high-order commensurate phases. This leads to the so-
called `̀ devil's staircase'' of phase transitions.

Another weakness of the above criterion is that it does not include incommensurate phases exhibiting
domain wall networks [61,62]. In such cases the incommensurate phase is composed of large
commensurate domains separated by walls which can have different structure, thickness and orientation
(Section 3).

A useful measure of the relative size of the adsorbate and the surface lattice unit cell is the so-called
dimensional incompatibility parameter [166], de®ned as

I � �aÿ r1�=r1; (2.9)

where a is the surface lattice constant and r1 is the distance between adsorbate atoms in the surface
phase. Of course, in the case of a rectangular symmetry of the surface lattice, one can de®ne two
different dimensional incompatibility parameters I1 and I2, by taking a � ja1j and a � ja2j. As will be
discussed in Section 5, the behavior of ®lms formed on corrugated surfaces is closely related to the
magnitude of the parameter I.
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2.2.1. Lattice models of localized adsorption
Assuming that the potential barriers between adjacent minima of the surface potential are high, as

compared to the admolecule±admolecule and thermal energies, one can treat the adsorbed atoms as
bound to those adsorption sites and unable to take different positions over the surface. The locations of
the surface potential minima form a regular lattice of the same geometry as that of the substrate's
surfacial layer. The resulting model of localized adsorption can be represented in the general
framework of the lattice gas model [5,127,167±173].

In the simplest version of such a model, every site i is characterized by a single degree of freedom,
the occupation variable, ni, which equals 1 when the site is occupied by the adsorbate atom, and equals
0 when the site is empty. In this way, the model mimics the exclusion of multiple occupation of the
same surface element. Assuming that the interaction energy between the adsorbate particles and the
substrate is the same for all sites and equal to V0 (V0 is negative for attractive interaction) and that the
interaction between adsorbed atoms is pairwise additive and represented by the potential u�rij�, with rij

being the distance between the sites i and j, the Hamiltonian for the above model reads

H � V0

X
i

ni � 1

2

X
i6�j

u�rij�ninj: (2.10)

To meet the usual experimental conditions of equilibrium between the adsorbed ®lm and the bulk
uniform gas, it is convenient to work in the grand canonical ensemble. Now the chemical potential of
the adsorbate m is the independent thermodynamic parameter, and the Hamiltonian for this case is
obtained by subtracting the term mN � m

P
ni from Eq. (2.10), i.e., we have

H0 �Hÿ mN � �V0 ÿ m�
X

i

ni �
X
i6�j

u�rij�ninj: (2.11)

The surface coverage y is a conjugate variable to m and can be calculated from the following relation:

y � ÿ @�F=kT�
@m

� �
T

; (2.12)

where F is the system free energy given by

F � ÿkT ln Tr exp�ÿH0�fnig�=kT � (2.13)

and the trace is taken over all con®gurations fnig of the entire system. Assuming that the bulk gas is
ideal, with the chemical potential mg related to the pressure p by the equation

mg � m0
g � kT ln p (2.14)

we get the following general equation of the adsorption isotherm:

ln p � ÿm0
g=kT � 1

L2kT

@F

@y

� �
T

; (2.15)

where L is the linear dimension of the lattice and it is assumed here that L!1. One can also readily
relate the thermal average of the occupation variable to the coverage y. Namely for the lattice of L2 sites
we have

y � 1

L2

XL2

i�1

hniiT : (2.16)
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Similarly, the average potential energy per lattice site is given by

U � hHiT=L2 � V0 � 1

2L2

X
i6�j

u�rij�hninjiT : (2.17)

It is also straightforward to obtain expressions for other thermodynamic quantities, such as the heat
capacity

C � 1

kT2L2
�hH2iT ÿ hHi2T � (2.18)

and the isothermal compressibility

k � 1

kTL2

X
i

hn2
i i ÿ

X
i

hnii
 !2

24 35 (2.19)

which carries the information about the density ¯uctuations in the adsorbed ®lm.
The lattice gas model Hamiltonian (2.11) can be mapped on an equivalent Ising model Hamiltonian

HIsing [129]. The spin orientation at the ith site Si � �1 is related to the occupation variable ni by

Si � 1ÿ 2ni (2.20)

and it yields

H0 � 1

2
N�V0 ÿ m� � 1

4

X
i6�j

u�rij� �HIsing (2.21)

with

HIsing � ÿH
X

i

Si ÿ
X
i6�j

JijSiSj: (2.22)

In the above

H � 1

4

X
j�6�i�

u�rij� � 1

2
�V0 ÿ m� (2.23)

is the `̀ magnetic ®eld'' related to the chemical potential and

Jij � ÿ u�rij�
4

(2.24)

are the effective two-spin coupling constants. Representation of the lattice model in the `̀ magnetic
language'' immediately brings out the symmetry properties of the Hamiltonian (2.22). Namely, it is
invariant under the transformation

H; fSig ! ÿH; fÿSig: (2.25)

This implies that the adsorption isotherm is antisymmetric with respect to the point y � 1=2, m � mc,
where mc is the chemical potential value corresponding to H � 0.

The above model assumes that interactions in the system are pairwise additive. In many situations the
inclusion of contributions due to non-pairwise interactions may be also needed [167,169]. For example,
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the energy of the occupied triangle of neighboring sites Fig. 2 involves a three-body interaction term ut

and is equal to 2u�r1� � u�r2� � ut. The inclusion of three-body interaction modi®es the expression for
the con®gurational energy of the system (2.10) and gives

H � V0

X
i

ni � 1

2

X
i6�j

u�rij�ninj �
X

i6�j6�k

utninjnk: (2.26)

The most important consequence of nonzero three-body interaction is the removal of above mentioned
symmetry properties of the Hamiltonian.

Another possibility is to consider lattice gas models with anisotropic interactions in different
directions [33,170]. Such a model may be used to mimic adsorption on rectangular lattices. This last
model allows to consider the formation of both the commensurate as well as incommensurate phases.
When the mutual occupation of adjacent sites is excluded (large size of adsorbate atoms), the surface
lattice can be decomposed into a number (q) of sublattices, as it will be discussed in Section 3. Another
possibility is to use the lattice gas model formalism to represent the properties of multilayer ®lms
[43,174±178] and to study wetting phenomena (see Section 4). In this case, the three-dimensional
version of the lattice model is considered, with the surface potential represented as a function of the
distance from the surface z. Of course, in the lattice gas model language this distance can assume only
discrete values and is expressed in lattice spacings.

Several speci®c examples of lattice gas models used to represent adsorption on square and
rectangular lattices will be considered in Section 4.

2.2.2. Early theories of adsorption on corrugated surfaces

It seems intuitively obvious that lattice gas models are best suited to represent low temperature
adsorption on highly corrugated surfaces. Only in such cases, the effects due to surface diffusion of
adatoms can be safely ignored. For example, the temperature dependence of the con®gurational heat
capacity of a single atom adsorbed on a crystalline solid was found [179,180] to exhibit a broad peak
with the maximum located at T � 0:2VD=k, where VD is the height of the potential barrier between
adjacent sites. The position of that maximum only very slightly depends on the surface lattice
symmetry and the size of adsorbed atoms. The appearance of that heat capacity peak results directly
from a gradual transition from the regime of fully localized adsorption �kT=VD � 0:2� to the regime of
fully mobile adsorption �kT=VD � 0:2�. At the intermediate temperatures, the adsorption is neither

Fig. 2. Interaction energies on a square lattice. u�ri� represent pairwise interaction between the ith site and its nearest

neighbors and ut is the three-body energy.
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fully localized nor fully mobile and can be termed as partially localized. Of course, the degree of
localization of adatoms is not entirely determined by the parameter kT=VD, but depends also on the ®lm
density. Mutual interaction between the adsorbed atoms plays an important role in dense ®lms and may
stabilize commensurate structures, as well as lead to the formation of incommensurate ®lms, as will be
discussed in later sections of this article. Numerous experimental facts also support the concept of
partially localized adsorption (see Ref. [181] and the references cited therein).

Assuming for a moment that the degree of localization is entirely determined by the height of
potential barrier VD and the temperature, it is possible to construct a simple model which assumes that
the localized atoms are represented by the lattice gas model, while the mobile ones are treated as a two-
dimensional uniform ¯uid. Within the mean ®eld approximation, the localized atoms are represented in
the framework of Bragg±Williams approximation and the mobile ones by a two-dimensional
counterpart of the van der Waals ¯uid model. This approach leads to a simple equation of the adsorption
isotherm in the form [182]

p � K�T� y
1ÿ y

1ÿ y
1ÿ fly

� �fl

exp
fmy

1ÿ y
ÿ ay=kT

� �
; (2.27)

where K�T� is the Henry law constant, y the surface coverage, fl and fm are the fractions of localized
and mobile molecules, respectively, and the parameter a represents the effects of adsorbate±adsorbate
interaction and is given by

a � am fm�2ÿ fm� � alf 2
l : (2.28)

The constants am and al represent the effect of adsorbate±adsorbate interaction in fully mobile and
fully localized adsorption models, respectively. Note that both fl and fm � fl � fm � 1� are functions of
the temperature and the potential barrier VD. One important property of the above model is that it
predicts changes in the location of the critical point with VD. In particular, the critical value of the
surface coverage changes with the degree of localization. In the case of a simple lattice gas model with
attractive interaction between the nearest neighbors, the critical density is equal to yc � 1=2, while for
the two-dimensional uniform van der Waals ¯uid it is equal to 1/3. In many experimental situations the
value of yc lies between those two limiting values and the above model allows for a rough estimation of
the degree of localization if yc is known [183].

A more realistic model which assumes that the degree of localization depends also on the ®lm
density has been also developed. Holland [184] considered adsorption of hard disks, and then
Patrykiejew [185] extended the model by taking into account the effects of mutual attractive interaction
between the adsorbed atoms. The contribution due to localized atoms was obtained by minimizing
the Helmholtz free energy of the ®lm with respect to the density of localized atoms (for a ®xed total
surface coverage). This model allows also to include the possibility of formation of other registered
structures than a simple (1� 1) phase. In the case of adsorption on a surface with a square symmetry
and when the size of adsorbed atoms is too large for a mutual occupation of nearest neighbor sites, the
registered ordered phase corresponds to the c�2� 2� structure. In such a case the surface lattice can be
considered as composed of two interpenetrating sublattices (Section 3.1) and the formation of c�2� 2�
phase is connected with a preferential occupation of only one sublattice. Within the mean ®eld
approximation, the above model leads to the following set of equations which de®ne the adsorption
isotherm:
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p � Km�T� yÿ yl
1ÿ y

exp
yÿ yl
1ÿ y

ÿ amy=kT

� �
; (2.29)

C�T� � �1ÿ yl��yÿ yl�
�y2

l ÿ d2�1=2�1ÿ y�
exp�Day=kT � (2.30)

and

d �
0; yl � 2kT=D;
kT

D
ln

yl � d
yl ÿ d

; yl > 2kT=D;

8<: (2.31)

where Km�T� is the Henry constant for mobile adsorption, the function C�T� depends also on
VD;Da � am ÿ 1

2
�aii � aij�;D � aii ÿ aij; yl is the surface coverage corresponding to localized atoms

and d measures the asymmetry of occupation of different sublattices by the localized atoms. The
parameters aii and aij represent the energies of interaction between localized atoms located on the same
and different sublattices, respectively. Note that the values of aii and aij depend on the relative size of
adatoms and the surface lattice unit cell.

The above model predicts that the distribution of adatoms between the sublattices is uniform when
the total surface coverage is lower than

y� � H�T� � 2kT=D

H�T� � 1
; (2.32)

where

H�T� � 2kT

2kT ÿ D
C�T�expfÿ2�am ÿ 1

2
�aii � aij��=Dg: (2.33)

The preferential occupation of one sublattice occurs for higher surface coverages (y > y�).
The parameters Da and D are primarily determined by the relative size of adsorbate atoms and lattice

unit cell. Thus, one can relate them to the dimensional incompatibility between adsorbate and adsorbant
I. The dependence of the ®lm properties on the height of potential barrier for diffusion is carried by the
parameter C�T�, which changes with VD and T . At the low temperature limit C�T� ! 0, the adsorption
is fully localized, while at the high temperature limit C�T� ! 1 and adsorption is fully mobile.
Depending on the values of I and VD the model predicts four different types of phase diagrams for the
adsorbed monolayer as shown in Fig. 3. It should be noted that all situations depicted in Fig. 3 resemble
phase diagrams found in experimentally studied systems [166,187,188].

The main shortcoming of the above presented models is that they rest upon a very crude mean-®eld
approximation and also do not take into account any possibility of the formation of dense
incommensurate solid phases (Section 3.3). Observed qualitative similarities between the predictions of
those models and experimental observations may be misleading. The model predicts that the high
density (solid) phase is a registered c�2� 2� phase, while experiments [108], as well as computer
simulations [189], demonstrate clearly that the formation of registered (or partially registered) phase
occurs at lower densities and is often followed by the transition to a still more dense incommensurate
solid phase. Thus, the model does not correctly predict the topology of the phase diagram. Mean ®eld
character of the model leads also to a serious overestimation of the critical, triple and tricritical points
so that any ®t to experimental data is bound to give incorrect values of the parameters such as VD.
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Another simple model of monolayer adsorption on corrugated surfaces was proposed by Niskanen
[190]. The model includes both commensurate and incommensurate solid phases in addition to gas and
liquid phases. The ¯uid (gas and liquid) phases are represented by a lattice gas model while the solid
phases (both commensurate and incommensurate) are described in terms of the Lennard-Jones±
Devonshire cell model [191]. In order to construct phase diagrams the Helmholtz free energies of
different phases as functions of ®lm density �y� have been calculated. For the solid phases, the cell
model leads to the following simple expression for the free energy:

FS�y; T� � yu0 ÿ ykT ln �Af�y;T��; (2.34)

where u0 is the ground state energy per atom, Af�y;T) is the free area of thermal oscillations and its
analytic form is known [191]. It has been assumed that the surface corrugation does not affect the
properties of the incommensurate solid. A commensurate phase has been assumed to be represented by
the same model but for a speci®ed density yC. The particular value of yC has been determined by the
size of the surface unit cell. The effect of surface corrugation has been taken into account by assuming
that it leads to a lowering of the ground state energy of the commensurate phase by Du0, so that the free
energy for that phase reads

FC�yC;T� � FS�yC; T� ÿ yCDu0: (2.35)

The properties of the gas and liquid phases, represented by the Ising model, were evaluated using
approximate Kadanoff's variational method [192].

Fig. 3. Different types of the phase diagram (upper part) and the regions of the potential barrier for diffusion VD and the

dimensional incompatibility I corresponding to different phase behavior of adsorbed monolayer ®lms (lower part) predicted by

Eq. (2.29) (from ref. [186]).
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The above model predicts very rich phase diagrams. Their detailed structure depends on the assumed
value of the commensurate phase density, which is determined by the size of adsorbed atoms, and the
magnitude of surface corrugation. A mean ®eld character of the model leads to severe underestimation
of the entropy and predicts that all the observed transitions are ®rst-order. In particular, in the case of
triangular symmetry of substrate lattice considered by Niskanen, both solid phases are of the same
symmetry, so that the transition is bound to be continuous (Section 3). The use of lattice gas model to
represent ¯uid phases is also quite unrealistic for low surface corrugations as it ignores the effects of
surface corrugation on the structure of liquid phase and the location of the critical point (Section 5). It
was argued that the model can be also applied to substrates with square symmetry, but then the assumed
cell model is a very poor representation for the incommensurate phase.

Although the approaches recalled above vastly oversimplify the reality and cannot be directly applied
to quantitative analysis of experimental data, they clearly demonstrate that even simple methods of
statistical mechanics allow to develop models which reveal the importance of the surface corrugation
on the behavior of adsorbed ®lms.

2.2.3. Continuous space models
In principle, the problem of gas adsorption on a crystalline surface characterized by ®nite corrugation

of the surface potential can be approached with the use of theoretical methods similar to those
developed for uniform systems.

In the most general case, a gas in contact with a solid surface can be considered as a ¯uid subjected to
the external potential ®eld [193,194]. Thermodynamic properties of such systems can be determined
using various approaches such as virial series methods [21,193], integro-differential equations
analogous to the Born±Yvon±Green hierarchy [195,196] and the density functional theory [197±200].
The quantities characterizing the adsorbed state are de®ned as surface excesses of the appropriate
thermodynamic functions [193]. For example, the amount adsorbed G, is given by the surface excess of
the density

G �
Z

V

�r�r� ÿ rb� dr; (2.36)

where r�r� is the local density at r, r0 is the corresponding bulk uniform ¯uid density

r0 � lim
z!1r�r� (2.37)

and the integration in Eq. (2.36) is performed over the entire volume of the system. Note that for large
distances from the surface the local density becomes independent of s � �x; y�. At low ®lm densities
[193]

r�r� / exp�ÿbv�r�� (2.38)

and we know that the variation of v�r� with x; y ceases as the distance from the surface increases
(Section 2.2).

In a similar fashion one can de®ne the surface excess for any other thermodynamic quantity Y.
Namely, de®ning the local density y�r� of the quantity Y one obtains

yex �
Z

V

�y�r� ÿ y0� dr: (2.39)
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For example, when the adsorbate±adsorbate interaction is pairwise additive and represented by the
potential u�r� then the potential energy is represented by

E �
Z

V

e�r� dr (2.40)

with the energy density e�r� de®ned as

e�r� � r�r�v�r� � 1

2

Z
V

n�2��r; r0�u�jrÿ r0j� dr0: (2.41)

In the above, n�2��r; r0� is the two-particle distribution function, which can be written as

n�2��r1; r2� � r�r1�r�r2�g2�r1; r2�; (2.42)

where g2�r1; r2� is the two-particle correlation function. From the above equations it follows that
evaluation of the thermodynamic quantities which characterize the system requires detailed knowledge
about the local density as well as the two-particle correlation function. Evaluation of those quantities is
a highly nontrivial problem and the vast majority of existing theories [196,198,201] rests upon the
approximation

g2�r1; r2� � g0
2�jr1 ÿ r2j�; (2.43)

where g0
2�r� is the two-particle correlation function for a uniform system. This approximation is

justi®ed only when the effects of surface corrugation are negligible and the adsorbing surface can be
considered as an attractive plane. When one is mostly interested in the effects due to surface
corrugation on the behavior and properties of adsorbed ®lms, the use of full three-dimensional version
of the nonuniform ¯uid theory is not practical. Calculation of surface excesses of the thermodynamic
quantities requires evaluation of multidimensional integrals over the entire volume. Periodic variation
of the gas±solid potential affects the properties of the adsorbate at small distances from the surface
(Section 2.2) and the potential barrier for surface diffusion is usually much lower than the adsorption
energy. Since the gas±solid potential exhibits a rather sharp and deep minimum at a certain preferred
distance from the surface, the adsorbed particles are rather tightly bound to the substrate. At low
temperatures, where the surface corrugation effects are important, the interface between the adsorbed
layer and the bulk (uniform) gas is usually well de®ned. This allows to consider the adsorbed
monolayer ®lm as a two-dimensional phase in equilibrium with a bulk (uniform) gas. Prasad and
Toxvaerd [196] have presented a formal theory for such systems using the BBGKY hierarchy [195] of
integro-differential equations.

Saam and Ebner [197] and Fairbent et al. [198] considered the density functional theory which
assumes that the local density is represented by a superposition of gaussian functions. A similar theory
was considered by Sokoøowski and Steele [199] and then by Patrykiejew and Sokoøowski [200]. Several
perturbational theories have been also proposed [201,202]. In such cases, the effects of surface
corrugation are assumed to be small enough to be treated as a perturbation to an otherwise uniform two-
dimensional ¯uid subjected to a uniform surface potential

v0 � hv�s�is: (2.44)

Periodicity of the gas±solid potential allows to represent the Boltzmann function e�s� � exp�ÿbv�s�� or
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the local density r�s� by the Fourier series

g�s� �
X

q

~gqexp�iq � s�; (2.45)

where g stands for e or r. Then the properties of a nonuniform system are expanded with respect to the
difference

Dg�s� � g�s� ÿ g0; (2.46)

where g0 corresponds to the uniform reference system.
For example, the perturbational expansion for the local density with respect to De�s� reads [202]

ln t�s1� � r0

Z
�g20�t12� ÿ 1�De�s2� ds2

� 1

2
r2

0

Z
�g30�s1; s2; s3� ÿ g20�t13�g20�t12� ÿ g20�t23��De�s2�De�s3� ds2 ds3 � � � � ;

(2.47)

where t�s� � r�s�=e�s� and gm0�s1; . . . ; sm� is the m-particle correlation function of the reference ¯uid.
Substituting Eq. (2.45) into the above expansion one gets

ln t�s� � r0

X
q�1

~eqexp�iq � s�~G20�q�

� 1

2
r2

0

X
q;q0�1

~eq~eq0 exp�i�q� q0� � s�~G30�q; q0� ÿ
X
q�1

~eqexp�iq � s�~G20�q�
( )

� � � � ; (2.48)

where ~G20�q� and ~G30�q; q0� are the Fourier transforms of the corresponding two-and three-particle
correlation functions. Once the local density of the nonuniform ¯uid is determined one can readily
calculate perturbational corrections to the system free energy and other thermodynamic quantities. Of
course, the above expansion can be used only for ¯uid phases and to a commensurate solid phase. The
symmetry properties of the incommensurate solid phase are usually different from the symmetry of
solid surface. The unit cell of a solid phase is characterized by the reciprocal lattice vectors k1 and k2

which are different from the surface lattice reciprocal vectors b1 and b2 (cf. Eq. (2.3)). The Fourier
expansion for the local density of incommensurate solid phase

rs�s� �
X

k

rs
k exp�ik � s�; (2.49)

where k � n1k1 � n2k2 (n1 and n2 are integers), is rather poorly convergent and the use of
perturbational as well as density functional theories requires additional simplifying assumptions.
Fairbent et al. [197] proposed to represent the local density of a solid phase by a superposition of
Gaussian functions. This approximation gives reasonable results only when the solid phase has the
same symmetry as the symmetry of solid lattice and the difference between lattice unit cells of the
adsorbed layer is not much different from the surface unit cell. Therefore, it is not appropriate to
describe ¯uid±solid equilibria in adsorbed ®lms on a square or rectangular lattice.

The fundamental problem that somewhat limits the applications of the above mentioned two-
dimensional perturbational as well as density functional theories is connected with their mean ®eld
character. It is so because exact solutions for multiparticle correlation functions are not available.
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Besides, when applied to adsorption on corrugated surfaces, those theories assume that the effects of
surface corrugation are small and do not lead to any appreciable out-of-plane effects [203] and ignore,
often present, nonuniform density modulations in the ®lm (Section 5).

In fact, the only reliable methods which allow for investigation of adsorption on surfaces with ®nite
corrugation of the gas±solid potential are computer simulations [30,34,131±133], discussed in detail in
Section 5.

3. Theories of surface phase transitions

3.1. Ordered states and order±disorder transitions

In this section we wish to recall some basic aspects of the theory of phase transitions which are a
necessary prerequisite in order to provide a framework for the discussion of various numerical results in
the later sections. We shall emphasize features which distinguish the ordering of these (quasi-) two-
dimensional adsorbed layers and the phase transitions which they can undergo from corresponding
phenomena in the bulk. We assume some familiarity with the theory of phase transitions and critical
phenomena in general (see e.g. [46,204,205] for more tutorial introductions).

At ®rst sight one expects for an adsorbed monolayer all the phases which are familiar states of matter
in three space dimensions: gas, ¯uid and various solid phases (Fig. 4). But there are important

Fig. 4. Schematic cross section of a crystal surface with an adsorbed monolayer (substrate atoms are denoted as open circles,

adsorbate atoms as full circles). Springs indicate adsorbate±adsorbate interactions. Lattice gas (A), ¯uid (B), commensurate

(C) and incommensurate (D) solid phases are shown. While cases (A)±(D) assume adsorption of simple atoms, case (E) refers

to adsorption of non-dissociated molecules, where internal degrees of freedom of the molecules may show an additional

ordering (example: the antiferromagnetic structure of O2 on graphite).
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differences both due to the presence of the corrugation potential caused by the underlying substrate, and
by the more profound effect of statistical ¯uctuations that destabilize certain orderings in two
dimensions. If the periodic variation of the corrugation potential is very strong, in comparison with the
interaction between adatoms, it may be appropriate to treat the ordering phenomena as a problem in
lattice statistics. As discussed already in Section 2.2.1, one considers the ideal lattice formed by the
minima of the corrugation potential (disregarding any defects or heterogeneities that may be present at
surfaces of real crystals). Each lattice site can be occupied at most by one adatom. If the (pairwise)
interaction between adatoms is purely attractive, the only phase which one expects is a lattice gas phase
at low coverage, separated by a two-phase coexistence region from a `̀ lattice-¯uid'' phase at higher
coverage (Fig. 4A, B). This lattice ¯uid can be considered as a version of the registered �1� 1� phase
(where every available site of the lattice is occupied, corresponding to the maximum coverage y � 1 of
the monolayer) diluted with vacancies.

In many cases of practical interest the adatom±adatom interactions are repulsive at least for nearest-
neighbor distances on the lattice. Then at low enough temperatures registered superstructures (i.e.
monolayers with a periodicity of their ordering that exceeds the lattice spacing a but is commensurate
with it) occur (Fig. 4C), Fig. 5 shows examples for a square symmetry of the substrate surface (some
other examples will be also invoked in Section 4).

If the potential binding the adlayer to the substrate surface would have vanishing corrugation,
we would have to consider essentially ordering phenomena in continuous two-dimensional space.
This limiting case is particularly interesting with respect to the liquid±solid transition and the nature
of the two-dimensional solid in general. As will be discussed in Section 3.4, such two-dimen-
sional solids possess no true long-range positional order in the usual sense [206], although they
possess long-range orientational order. The melting then may occur via two continuous transitions,
implying a so-called `̀ hexatic'' phase in between this unconventional solid and the liquid [39], see
Section 3.4. These phenomena may persist in a weak corrugation potential as well (see also Section
5.3). Within the temperature region where solid phases are stable, suitable variation of parameters like
coverage (or spreading pressure) and temperature may lead to phase transitions between these
incommensurate solids and commensurate phases that are in registry with the substrate periodicity
Section 3.3.

While most part of this section is devoted to a discussion of monolayer phase transitions, under
suitable conditions also multilayer adsorption and wetting phenomena can be observed Section 3.5.
Clearly, it is of interest to understand the relations between the phase behavior of an adsorbate±
substrate system at low coverage to the phase behavior of multilayer ®lms at high coverage in the same
system.

We now start off with some general comments about order±disorder transitions in registered phases,
while critical properties at these transitions will be reviewed in Section 3.2.

For lattice gas systems it is convenient to transform from the local occupation variable ni �� 0 or 1�
to a pseudospin variable Si � 1ÿ 2ni �� �1� (see Section 4.1 for details). Then the coverage y is
related to the average magnetization of the pseudospins m � hSiiT , y � �1ÿ m�=2. For describing the
various orderings of Fig. 5, it is convenient to introduce sublattice magnetizations ma de®ned as

ma � �1=M�
X
i2a
hSiiT ; a � a; b; c; d; (3.1)

where M is the total number of sites but the sum is extended only over the M=4 sites of a particular
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sublattice a. Then the order parameter of the c�2� 2� phase can be written as follows:

Cc�2�2� � ma � mc ÿ �mb � md�: (3.2)

The two types of domains shown on the top of Fig. 5 simply correspond to Cc�2�2� � �1. Actually one
can combine the sublattices a, c into a single sublattice, as well as the sublattice b and d, so the
description of this structure would need only two sublattices. But the situation differs for the �2� 1�
structure, where two components are needed:

CI
�2�1� � ma � mb ÿ �mc � md�; CII

�2�1� � ma � md ÿ �mb � mc�: (3.3)

Fig. 5. Adsorbate superstructures on (100) surfaces of cubic crystals. Atoms in the top-layer of the substrate are shown as

white circles, while adsorbate atoms are shown as full black circles. Upper part shows the two possible domains of the

c�2� 2� structure, obtained by dividing the square lattice of preferred adsorption sites into two sublattices following a

checkerboard pattern: either the white sublattice or the black sublattice is occupied by the adatoms. In the �2� 1� structure,

however, full and empty rows alternate. These rows can be interchanged, and in addition they can be oriented either along the

x-direction (middle part) or the y-direction (lower part). So four possible domains result, and one needs a two-component order

parameter to describe this ordering, unlike the c�2� 2� structure where a single-component (i.e., scalar) order parameter is

appropriate. The lowest part of the ®gure indicates how one assigns 4 sublattices (a; b; c; d) to the square lattice.

228 A. Patrykiejew et al. / Surface Science Reports 37 (2000) 207±344



The domains shown in the middle of Fig. 5 correspond to CI
�2�1� � �1, CII

�2�1� � 0, while the domains
shown in the lower part correspond to CI

�2�1� � 0;CII
�2�1� � �1. For the �2� 2� structure on the square

lattice (not shown in Fig. 5, but shown in Fig. 23 as the structure No. 3), where only one of the four
sublattices (a; b; c; d) is occupied while the other three sublattices are empty, so that this ordering in the
ideal case leads to a coverage y � 1=4, one needs three independent order parameter components, e.g.

CI
�2�2� � ÿma � mb � mc � md; CII

�2�2� � ma ÿ mb � mc � md;

CIII
�2�2� � ma � mb ÿ mc � md: (3.4)

Note that due to the constraint ma � mb � mc � md � m there is no fourth independent component. The
order parameter components de®ned in Eq. (3.4) thus do not bring out the symmetry properties of the
structure in a natural way; thus in practice one often proceeds differently, by considering the expansion
of the ordering in terms of mass density waves, as will be discussed below. Here we only emphasize
that order parameters of the type considered in Eqs. (3.2), (3.3) and (3.4) are not only appropriate for
lattice gas models, but can be used as well for any corresponding structure in the off-lattice case if it is
commensurate with the square lattice of the substrate (100) surface. Analogous considerations can be
made, of course, in the case where the substrate surface has (110) geometry, and the lattice of preferred
sites then is a rectangular rather than a square lattice. Sublattices a; b; c; d may be introduced for the
rectangular structure analogously, and the c�2� 2� structure described by Cc�2�2�; the structure
�2� 1�, described by C�2�1�, exists as well. However, the two components written for the �2� 1�
structure in Eq. (3.3) are no longer equivalent, because the lattice spacing of the rectangular lattice is���

2
p

a in the y direction and a in the x direction, and hence the adatoms for CI
�2�1� (middle part of Fig. 5

could be a distance 2a apart along the x-axis, while for CII
�2�1� (lower part of Fig. 5) they are a distance

a
���
2
p

apart. Therefore the two cases CI
�2�1�;C

II
�2�1�, really are to be considered as different structures,

rather than as different components of thesame structure, and hence we rather have two distinct �2� 1�
structures on the rectangular lattice with a single order parameter component each (Fig. 6). Note that
the structure where rows of occupied sites run in the x-direction is rather unlikely to occur, since it
would imply a nearest neighbor distance of a in the x-direction but 2a

���
2
p

in the y-direction, and hence
could be stabilized only by very anisotropic adatom±adatom interactions. Therefore this structure is not
considered in Fig. 6.

We now turn to a discussion of how these various orderings show up in reciprocal space, since
experimental scattering techniques (such as low energy electron diffraction (LEED), elastic scattering
of synchrotron radiation or neutrons, etc.) yield related information via superstructure Bragg spots and
their intensities. As an example, the reciprocal lattice and the 1st Brillouin zones for the square and
triangular lattices are shown in Fig. 7. Note that in the case of weak corrugation we expect a close-
packed triangular structure of adatoms, with a lattice spacing incommensurate with the underlying
substrate lattice, but rather given by the chosen coverage y. In reciprocal space, this �1� 1� triangular
structure would cause Bragg spots according to the outer hexagon in the lower part of Fig. 7.
Superstructures relative to this basic triangular lattice fsuch as � ���3p � ���

3
p �R30� and �2� 2� structures,

as included in Fig. 7} are not expected in this case; we expect such superstructures only for adsorption
on close-packed (111) surfaces of cubic crystals or on hexagonal substrates (such as graphite, for
instance), which are beyond the scope of the present treatment, however.

The superlattice Bragg spots of the c�2� 2� and �2� 1� superstructures on the square lattice occur at
special points at the boundary of the 1st Brillouin zone, as shown in Fig. 7. For instance, the c�2� 2�
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structure is characterized by the point q0 � �p=a��1; 1�, when a is the lattice spacing of the square
lattice. Of course, other Bragg spots appear at additional positions such as �p=a��1;ÿ1�,
�p=a��ÿ1;ÿ1�, etc., but they need not be considered explicitly since they can be obtained from q0

by adding a suitable vector of the reciprocal lattice.
On the other hand, for the �2� 1� structure two vectors q1 � �p=a��1; 0� and q2 � �p=a��0; 1� are

required, they are not related by a reciprocal lattice vector of the original square lattice. In the general
case one can ®nd all l independent members of qi (the so-called `̀ star'' of q1) by applying the point
group operations of the lattice of adsorption sites to q1, and one keeps only those that are not related by
a reciprocal lattice vector G. Here we do not elaborate on these group-theoretical aspects of adsorbate
layer ordering, but rather direct the reader to the appropriate literature [207,208].

Fig. 6. Adsorbate superstructures on (110) surfaces of face-centered cubic crystals. Atoms in the two topmost layers of the

substrate are shown as white circles, while adsorbate atoms are shown as full black circles. Left part shows the two possible

domains of the c�2� 2� structure, while the right part shows the two possible domains of the �2� 1� structure (with rows of

occupied sites running in the y-direction, so that the nearest adatoms are at distances
���
2
p

a and 2a, respectively, when a is the

lattice spacing of the rectangular lattice of preferred sites).
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If the star of q1 is known, the ordering can be described by an expansion of the local density hrji in
mass density waves,

hrji � y�
Xl

s�1

r�qs�exp�iqs � Rj�; (3.5)

Rj being the lattice vector of the site j. If some vector G of the reciprocal lattice connects qs and ÿqs,
the Fourier component r�qs� is real and one has

hrji � y�
Xl

s�1

r�qs� cos�qs � Rj�; (3.6)

while otherwise one has to split r�qs� into real and imaginary parts [46,207,208]. Assuming that

Fig. 7. Reciprocal lattice and the 1st Brillouin zone for the square lattice (upper part) and the triangular lattice (lower part).

The c�2� 2� structure is described by the single wave vector q0 in reciprocal space, while the �2� 2� structure on the square

lattice is described by a star �q1; q2�, as well as the
���
3
p � ���

3
p

R30� structure on the triangular lattice. The star of the �2� 2�
structure on the triangular lattice contains three members q1, q2, and q3.
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Eq. (3.6) holds, the order parameter components fs can be identi®ed as

f � 1

N

X
j

�hrji ÿ y� cos�qs � Rj�; s � 1; . . . ; l: (3.7)

As an illustration, we note for the square lattice that the lattice points Rj � �m; n�a; with m; n integers.
Using qs � q0 � �p=a��1; 1� for the c�2� 2� structure in Eq. (3.7), we recover the single order
parameter component

f � 1

N

X
j

�hrji ÿ y��ÿ1�m�n; (3.8)

which agrees with Cc�2�2� (apart from a trivial normalization factor 2). For the (2� 1) structure, we
®nd two components, using q1 � �p=a��1; 0� and q2 � �p=a��0; 1�,

f1 �
1

N

X
j

�hrji ÿ y��ÿ1�m; f2 �
1

N

X
j

�hrji ÿ y��ÿ1�n; (3.9)

again equivalent to CI
�2�1�, and CII

�2�1� (Eq. (3.3)) as expected. Similar considerations can be performed
for more complicated structures on the square lattice as well, and the treatment can be extended also to
the rectangular lattice, of course.

The nature and symmetry properties of the order parameter (components) have consequences on the
Landau expansion of the free energy Fffg in terms of the order parameter. Although Landau theory
has the character of a mean ®eld theory [46,204,205] and hence is a bad guide, as far as the description
of critical phenomena of adsorbed layers is concerned (see Section 3.2), it is nevertheless useful as a
basis for the development of a classi®cation scheme of the various superstructures into the appropriate
`̀ universality classes'' [46,207]. E.g. for the c�2� 2� structure (both on the square and the rectangular
lattice) and for the �2� 1� structure on the rectangular lattice we have a scalar (one-component) order
parameter, which simply changes sign when we interchange occupied and empty sublattices. The free
energy cannot depend on the particular way how sublattices have been assigned and must be
independent of the resulting sign of the order parameter, of course. Thus only even terms can appear in
the Landau expansion of these structures, F0; r; u being constants,

F � F0 � 1
2

rf2 � 1
4

uf4 � � � � : (3.10)

Eq. (3.10) is of the same form as the Landau expansion of an Ising ferromagnet (where f corresponds
to the magnetization). Thus Eq. (3.10) puts the corresponding adsorbate superstructures in the
universality class of the two-dimensional Ising model (if they undergo in fact a second-order phase
transition into the disordered phase, as the latter model does).

A different behavior results for the �2� 1� structure on the square lattice, for which the Landau
expansion takes the form [209]

F � F0 � 1
2

r�f2
1 � f2

2� � 1
4

u�f4
1 � f4

2� � u0�f2
1f

2
2�

� �� � � � : (3.11)

If u0 � 2u, the quartic term could be written as 1
4

u�f2�2 � 1
4

u�f2
1 � f2

2�2, and we were to recover the
Landau expansion of an isotropic two-component ferromagnet (`̀ XY-model [46,204,205]). Actually,
for the �2� 1� structure such a full rotational symmetry in the plane of the order parameter components
�f1;f2� is not found in general (and is also not expected). Clearly the two lattice axes �x; y� of the
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square lattice single out four choices of �f1;f2� corresponding to the four kinds of domains shown in
Fig. 5. As a result, the �2� 1� structure on the square lattice belongs to the class of the `̀ XY model
with cubic anisotropy'' [209]. Similar considerations leading to the appropriate Landau expansions are
also possible for the more complicated orderings on the square lattice, as well as for the structures of
interest on the rectangular lattice.

3.2. Critical phenomena in surface systems

A quantity of central interest for the discussion of critical phenomena of adsorbed layers is the
structure factor S�q�, which is the (two-dimensional) Fourier transform of the pair correlation function
of the adatom density r�x� (note hr�x�i � y�

S�q� �
X

x

exp�iq � x�G�x�; G�x� � hr�0�r�x�i ÿ y2: (3.12)

For a lattice gas system, the
P

x extends over all lattice sites, of course; for an off-lattice description of
adsorbed layers Eq. (3.12) applies also if the

P
x is interpreted as an integration over continuous space

x. In the vicinity of any superlattice Bragg spot qB, i.e. for k � qÿ qB with k � jkj � jqBj, we can
write S�q� as follows:

S�q� � f2�T�d�k� � ST�qB�= 1� k2x2
� �

; kx� 1; (3.13)

where f�T� is the order parameter of the considered superstructure (for simplicity we treat here only a
one-component order parameter), ST�qB� is the peak intensity of the thermal diffuse scattering, and x is
the associated correlation length. If there is a second order phase transition at some critical temperature
Tc;f�T� � 0 for T > Tc, of course, and thus Eq. (3.13) holds for both T > Tc and for T < Tc, while
right at the critical temperature a different behavior is predicted [46,204,205]:

S�q� � STc�q� / kÿ�2ÿZ�; (3.14)

Z being a critical exponent related to the decay of critical correlations with distance {G�x� / xÿZ in
d � 2 dimensions at Tc}. The behavior of S�q� is plotted schematically in Fig. 8, where we have written
ST�q� � kBTwT�k� to emphasize that in the pseudospin representation of a lattice gas wT�k� can be
interpreted as a (staggered) susceptibility [46,204,205].

At a second order phase transition, one expects a critical temperature dependence of the order
parameter f�T�, the diffuse scattering peak intensity and the correlation length x as follows:

f�T� � f̂�ÿt�b; ST�qB� � Ĝ�jtjÿg; x � x̂�jtjÿn; t! 0; (3.15)

where f̂; Ĝ� and x̂� are the appropriate `̀ critical amplitudes'' [46,204,205] (the signs � refer to the
signs of t � T=Tc ÿ 1).

A further critical exponent �a� is de®ned in terms of the speci®c heat singularity,

C � @U

@T

� �
m
� T

@2F

@T2

� �
m
� Ĉ�jtjÿa � C0 � C1t � � � � ; (3.16)

where we assume an adsorbed system in equilibrium with surrounding gas (so that not the coverage y of
the adsorbed layer but rather the chemical potential m is a given independent thermodynamic variable).
Note that in addition to the singular term (again the two signs � of the amplitude Ĉ� refer to the sign of
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t for T > Tc and T < Tc, respectively) regular background terms, analytic in t, are added, since these
terms often are not negligible, in the region of jtj that can actually be reached.

While C can be measured for adsorbed layers on graphite (see e.g. [55] for a review), due to the
favorable surface to volume ratio of this substrate, a direct measurement of C for monolayers adsorbed
on metal surfaces is impossible. Here it is worth pointing out that one can estimate also the speci®c heat
singularity from scattering, when one considers the integrated scattering intensity [210,211]. Actually,
such an integration over a range of wavenumbers 0 < k < kI always occurs, due to the ®nite resolution
of the experimental setup (which we characterize by a wavenumber kI here). Thus the intensity
I�qB; kI; t� can be written as

I�qB; kI; t� �
Z

k<kI

d2kS�q�; (3.17)

Fig. 8. Schematic plot of the scattering intensity S�q� as a function of temperature distance k from a superstructure Bragg

spot in reciprocal space. For k � 0 one observes a critical divergence according to the ordering `̀ susceptibility''

ST�qB� � kBTwT�0� / jtjÿg, superimposed by a delta function whose weight is given by the square of the order parameter. For

a non-zero wavenumber k1, the scattering intensity has a maximum slightly above Tc, re¯ecting the smooth crossover from

Ornstein±Zernike behavior for kx � 1 to the critical decay kZÿ2 at Tc. Near Tc for k 6� 0, the intensity exhibits a singular

temperature derivative due to the term �I2jtj1ÿa, as indicated in the ®gure. Note that the halfwidth of the Ornstein±Zernike

peaks describing the diffuse scattering fST�q� � ST�qB�=�1� k2x2�g shrinks to zero as T ! 0, since the correlation length x
diverges �x / jtjÿn�. The critical exponents of the speci®c heat, ordering susceptibility and correlation length have been

denoted as a, g and n, as usual [46,204,205].
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where S�q� is given by Eq. (3.13) only for kx� 1 while in the opposite limit kx� 1 (and T > Tc) the
result is written in terms of the scaling function ~S�z� as

S�q� � kÿ�2ÿZ�~S�kx� � S0kÿ�2ÿZ� � S1�kx�ÿ�1ÿa�=n � � � � ; (3.18)

where S0 and S1 are constants. The second term on the r.h.s. of Eq. (3.18), that generalizes
Eq. (3.14), results from an energy-like singularity {note that the internal energy
U � U0 � Tc�1=�1ÿ a��Ĉ�jtj1ÿa sign�t� � C0T � � � � ; cf. Eq. (3.16)} of the order parameter pair
correlation functions near Tc. Eqs. (3.17) and (3.18) then yield

I�qB; kI; t� / 1� I1t � I2jtj1ÿa � � � � ; (3.19)

where I1; I2 are constants {and a term regular in t has been included in Eqs. (3.18) and (3.19), for the
sake of consistency with Eq. (3.16)}.

A related energy-like singularity in fact is expected in the coverage y�t; m� itself, if the system
undergoes an order±disorder transition as a function of temperature at constant m,

y � yc�m� � ŷ�m�jtj1ÿa � y1t � � � � ; (3.20)

where yc�m� is the coverage at the critical temperature Tc�m�; ŷc�m� is another amplitude factor and y1 is
a constant. Since in general Tc � Tc�m� depends on m, we can also probe the transition by varying m at
constant T (e.g., by controlling the gas pressure in a physi-sorption experiment). As long as one crosses
the transition line Tc�m� or its inverse function mc�T� at a ®nite angle, one still obtains the same
exponents. Thus

f�m� / mc�T� ÿ m� �b; S�qB� / jmc�T� ÿ mjÿg; . . . : (3.21)

However, it is interesting to consider what Eq. (3.21), and the analog of Eq. (3.20), namely
yÿ yc�T� / �mc�T� ÿ m�1ÿa, imply when we rewrite the order parameter as a function of coverage at
constant temperature. Thus (to leading order, assuming a > 0) one gets

f�y� / yc�T� ÿ y� �b=�1ÿa�: (3.22)

Again the same exponent applies whenever we cross the transition line yc�T� (or its inverse function
Tc�y�) under a ®nite (nonzero) angle, and thus in an experiment at constant coverage one does not
observe the exponent b quoted in Eq. (3.15) but rather bF � b=�1ÿ a�. This effect is called `̀ Fisher
renormalization'' [212]. A similar change applies to other quantities, too: S�qB� / jtjÿgF with
gF � g=�1ÿ a�;C / jtjÿaF with aF � ÿa=�1ÿ a�}. The Fisher renormalized exponents satisfy an
analogous scaling law �2ÿ aF � gF � 2bF� as the original ones [46,204,205]

2ÿ a � g� 2b: (3.23)

The above argument clearly does not work at the maximum of the transition line, Tmax�y� de®ned by
dTc�y�=dy � 0, and in fact no Fisher renormalization does occur then. We also note that no Fisher
renormalization occurs if a < 0, since then the leading term in the relation between y and t Eq. (3.20),
or the analogous relation between y and m, is analytic. Note also that even for a > 0 and dTc�y�=dy 6� 0
this Fisher renormalization will be visible only if one is close enough to criticality so that the singular
term in Eq. (3.20) dominates over the regular one. All these problems must be kept in mind if
experiments on surface critical behavior in adsorbed layers are carried out to check the theoretical
predictions. In the simulations one can choose to work either in the statistical ensemble at constant
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coverage or at constant pressure, of course, and hence this problem of Fisher renormalization can be
avoided.

For the sake of completeness, we mention that Eq. (3.23) is not the only scaling relation between
critical exponents. Another one is readily found from Eq. (3.18), recognizing that ~S�z! 0� / z2ÿm, in
order that powers of k cancel for k! 0. This yields S�qB� / x2ÿm / jtjÿn�2ÿZ� and hence, using Eq.
(3.15), we conclude

g � n�2ÿ Z�: (3.24)

Finally we mention the `̀ hyperscaling relation'' [72] involving the dimensionality d

2ÿ a � dn �� 2n in d � 2�: (3.25)

Now a very important additional concept about critical phenomena is the idea of `̀ universality''
[46,72,204,205]. The universality principle states that as a rule, critical exponents, dimensionless
critical amplitude combinations, and scaling functions (where `̀ scale factors'' have been absorbed in
the variables) do not depend on the details of the system but are the same for a whole class of systems:
the `̀ universality class'' to which a system belongs depends on the spatial dimensionality d, the number
of order parameter components n, and certain general properties of the Hamiltonian like symmetry
properties (e.g., the XY model with full rotational symmetry of the 2-component order parameter is one
class, while addition of a fourfold anisotropy (square lattice) or sixfold anisotropy (triangular lattice)
creates different universality classes [46,72,205,207]). Also the range of the (pairwise) interaction
v�ri ÿ rj� matters: While typically all systems with short range interactions, for which the second
moment of the interaction exists, de®ning the range R via

R2 �
X

r

r2v�r�=
X

r

v�r�; (3.26)

belong to the same class, the situation differs for power law interactions

v�r� � v̂rÿ�d�s�; 0 < s < 2; (3.27)

for which R � 1 according to Eq. (3.26). One can show [213] that the behavior of such systems is
mean ®eld like for 0 < s < d=2 (for d � 2 this is the range 0 < s < 1) while a non-trivial critical
behavior applies for d=2 < s < 1 (at s � d=2 � 1 power laws with mean-®eld exponents but
logarithmic correction factors are expected).

At this point, we also emphasize that simple power laws as written in Eq. (3.15) represent the leading
singular behavior in the limit t! 0 only, and in practical cases when t is not so small one should take
into account singular `̀ corrections to scaling'', e.g.

ST�qB� � Ĝ�jtjÿgf1� Ĝ
corr

� jtjx
corr
1 � � � �g; t! 0; (3.28)

where Ĝ
corr

� are the amplitude factors and xcorr
1 is the critical exponent of the leading singular correction

term. Often the accuracy of either experimental data or simulation does not allow to disentangle all
these parameters (also Tc is usually not known in beforehand and has to be extracted from the ®t
together with the critical exponents). Then it is common to analyze such data in terms of `̀ effective
exponents'' de®ned via a logarithmic derivative, e.g.

geff � ÿd ln ST�qB�=d ln jtj: (3.29)
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This notation is particularly useful when one studies `̀ crossover'' [72,214] from one universality class
to another, since varying a suitable parameter the correction amplitudes may become large and
ultimately even divergent; e.g., a crossover between the critical behavior of the Ising model and mean-
®eld critical behavior is observed when one studies systems with large but ®nite range R of the
interaction [215,216]. One can then show that in d � 2 the crossover from the Ising exponent �g � 7=4�
to the mean ®eld exponent �g � 1� is described by

ST�qB� � R2~w�tR2�; (3.30)

where ~w�z� / zÿ7=4 for small z while ~w�z� / 1=z for large z. The corresponding effective exponent
decreases monotonically from 7=4 to 1 for T > Tc while for T < Tc the variation is nonmonotonic,
since geff � 0:85 for tR2 � ÿ1 [215,216]. Note that in both cases the crossover from one limit to the
other is not sharp but rather smooth, i.e. it smeared out over several decades in the crossover scaling
variable z.

Similar crossover phenomena can also be discussed for other universality classes of critical
phenomena. Consider, for instance a monolayer of magnetic atoms adsorbed in the �1� 1� phase at full
coverage at the rectangular lattice. Assuming further that there is a strong magnetic anisotropy forcing
the spins of the atoms to lie in the xy-plane parallel to the substrate, a model Hamiltonian could be
written as follows

H � ÿJ
X
hi; ji

Sx
i Sx

j � �1ÿ D�Sy
i S

y
j

h i
; (3.31)

where it is assumed that only nearest neighbor pairs hi; ji of spins on the lattice interact. The exchange
constant is written as J for the x-components and J�1ÿ D� for the y-components of the spin (which for
simplicity are treated as classical unit vectors here). If D � 0 this model would be the XY-model of
ferromagnetism, if D � 1 it is the Ising model (extended to `̀ classical'' spins). On the rectangular
lattice, x and y directions are not equivalent, and hence D 6� 0 is a rather natural choice. If, however, D
is small the system may still behave like an XY-model for not too small t: only for t! 0 for any
nonzero value of D a crossover to Ising-like behavior occurs. Similar crossovers can occur for many
types of critical behavior.

Fig. 9 describes the generic situation of a crossover, where one assumes that the critical temperature
Tc�p� depends on a parameter p and ends at a value pm;Tm � Tc�p� in a `̀ special'' point. This special
point may be the isotropic point �D � 0� of the model, eq. (3.31), where then the coordinate g in Fig. 9
can be identi®ed with D, or the mean-®eld limit Rÿ1 � 0 of the medium-range Ising model of Eq.
(3.30), or a `̀ multicritical point'' such as a tricritical point (Fig. 10 [127]). At a tricritical point, a line of
second-order phase transitions ends and continues as a line of ®rst-order transitions [217,218]. It is then
advisable to de®ne `̀ scaling axes'' �t; g� which are perpendicular �t� and parallel �g� to the critical line
at the multicritical point (Fig. 9). Although for all p < pm the same type of critical behavior occurs, as it
should be according to the universality principle, the region in the T±p-plane where it actually can be
observed shrinks to zero smoothly as p! pm. Both the critical line and the center of the crossover
region can be expressed in terms of the so-called `̀ crossover exponent'' j [214],

tc � g1=j=yc; tcross � g1=j=ycross; (3.32)

yc; ycross being constants. The singular part of the free energy, which is a function of temperature T , the
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®eld H conjugate to the order parameter, and the parameter p, near the multicritical point can be cast
into a scaled form:

Fsing�T;H; p� � t2ÿam ~FfHtÿ�bm�gm�; gÿ1=jtg: (3.33)

Here am; bm; gm; . . . are the exponents (according to their usual meaning) at the multicritical point
�Tm; pm; �, and ~F�x; y� is a scaling function. Since we have assumed in Eq. (3.32) that the critical
singularities occur along the line y � yc � g1=jtc, it is implied that ~F�x; y� has at y � yc singularities
that yield the critical exponents at the critical line. For instance, using Eq. (3.33) yields for t! tc

~F�0; y� / �yÿ yc�2ÿa ) C / �t ÿ tc�ÿa for g > 0: (3.34)

On the other hand, for large enough t (where y � gÿ1=jt� ycross� we have Fsing�T ; 0; p� /
t2ÿam � �t ÿ tc�2ÿam since then tc � t. While the above description applies straightforwardly for the
case of the medium range Ising model {de®ning the inverse interaction volume as the variable g,
we have j � 1 in Eq. (3.32)} and for the example of the tricritical point (j � 1=2 in mean ®eld
theory, while for short range interactions as implied in Fig. 10 one has j � 4=9 [219]), a special case
occurs for the isotropic xy-model, Eq. (3.31) with D � 0: in this case statistical ¯uctuations are so
strong that the ordered state is destroyed completely, the system is at its `̀ lower critical dimensionality''
�lcd� [46,72,205]. For the Ising or Potts model [220,221] ferromagnet it is known that lcd � 1 so in
d � 2 stable ordered phases are possible, but for the xy-model (without anisotropy) lcd � 2.
Nevertheless, a continuous phase transition at a nonzero transition temperature TKT occurs, but it is

Fig. 9. Schematic phase diagram of a system exhibiting crossover between `̀ ordinary'' critical phenomena along the line

Tc�p < pm� and the multicritical point p � pm, Tm � Tc�pm�. Considering the approach to the critical line along an axis

parallel to the T-axis one will observe multicritical behavior as long as one stays above the dash-dotted curve

tcross � g1=f=ycross describing the center of the crossover region. Only in between the dash-dotted curve and the critical line

Tc�p� (full curve) can the correct asymptotic behavior be seen.
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not characterized by power laws but rather by an exponential divergence of the correlation length x
[37]

ln x � B=t�n; �n � 1=2; t � �T ÿ TKT�=TKT ; (3.35)

where B is a (nonuniversal) constant. At the same time, Eq. (3.18) remains valid, so the susceptibility
has also an exponential divergence, while the speci®c heat has an `̀ essential'' singularity, which is so
weak that in practice it would hardly be observable either in an experiment or in a simulation

Csing / exp�ÿAtÿ�n�; t! 0; (3.36)

where A is another nonuniversal constant.
The power-law decay of the order parameter correlation function, Eq. (3.14), exists not only at the

critical temperature TKT but in the whole temperature regime for 0 < T < TKT, with a temperature-

Fig. 10. Phase diagram for the square lattice gas with nearest neighbor repulsive interaction u�rnn� > 0, and next nearest

neighbor attractive interaction u�r2nn� � 0, in the plane of variables coverage y and temperature T (in units of the maximum

transition temperature Tmax
c of the order±disorder transition, which occurs for y � 1=2). Three choices of the ratio

R � u�r2nn�=u�rnn� are shown. While above the transition lines in this phase diagram only the disordered phase of the lattice

gas is thermodynamically stable, the c�2� 2� structure is stable in the central part of the phase diagram underneath the

(second-order) transition temperature Tc�y�. While these transition lines for R � 0 extend down to T � 0 fTc�y � yc� �
Tc�y � 1ÿ yc� � 0 with yc � 0:37 [127]} for R < 0 the second-order transitions end at tricritical points Tt�y � yt� and

Tt�y � 1ÿ yt�, respectively. For T < Tt and y < 1=2, one encounters a two-phase coexistence region between the c�2� 2�
phase and high-density lattice gas. Note that the phase diagram is strictly symmetric around y � 1=2, as is always implied for

lattice gases with only pairwise interactions. From Binder and Landau [127].
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dependent exponent Z�T�,
SixSjx � SiySjy

ÿ �
 � / jri ÿ rjjÿZ�T�; Z�T� � T=�4TKT�: (3.37)

Thus the regime of the ordered phase �0 < T < TKT� can in a sense be considered as a line of critical
points.

We conclude this section by quoting the exponent values of a few relevant models (or universality
classes, respectively) in Table 1.

We have to add the following comments:

1. The critical exponent d describes the response of the order parameter at Tc to the conjugate ®eld,

f / H1=d; T � Tc: (3.38)

It is related to the other exponents via scaling relations, e.g. d � �g� b�=b.
2. While short range Ising criticality is realized by the order±disorder transition of the c�2� 2�

structure on the square lattice or the �1� 2� structure on the rectangular lattice {symmetry group
p2mm}, the �2� 1� structure on the square lattice (symmetry group p4mm) is not included in the
table: the reason for this omission is that the xy-model with cubic anisotropy has non-universal
critical exponents, due to the presence of a `̀ marginal operator'' in the Hamiltonian (in the sense of
renormalization group theory [72]). We can realize the �2� 2� structure also by a lattice gas with
nearest �jnn� and next nearest neighbor interactions �jnnn�, if both interactions are repulsive and if
the ratio R � jnnn=jnn exceeds 1=2 [222]. It then turns out that not only the critical temperature Tc

but also the critical exponent n depends on R (Fig. 11), while the exponent Z � 1=4, independent of
R (all other scaling relations then follow from the scaling relations quoted above) [223±227].

3. On the ®rst-order side of the tricritical point, another exponent b2 can be de®ned, that describes how
the two-phase coexistence region vanishes when the tricritical temperature Tt is approached from
below, cf. Fig. 10,

ycoex;2 ÿ ycoex;1 / �1ÿ T=Tt�b2 : (3.39)

This exponent satis®es another scaling relation, involving the crossover exponent j, namely

b2 � �1ÿ at�=j: (3.40)

One ®nds b2 � 1 for the mean-®eld case (which in d � 2 is realized only for long range forces,

Table 1

Critical exponents for various relevant universality classes in d � 2 dimensions

Critical exponents Universality class

Ising criticality

(short range)

Ising mean-field

(long range)

Ising tricriticality

(short range)

Tricriticality mean

field (long range)

a 0 (log) 0 (jump) 8/9 1/2

b 1/8 1/2 1/24 1/4

g 7/4 1 37/36 1

n 1 1/2 5/9 1/2

d 15 3 77/3 5

Z 1/4 0 3/20 0
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unlike the case d � 3 [218]), while b2 � 1=4 for the short range tricritical universality class of the
Ising model.

3.3. Commensurate and incommensurate phases

We now return again to a distinction already made in Fig. 4: Given the fact that the corrugation
potential due to the substrate de®nes a periodicity that the atoms in the adsorbate monolayer are
exposed to, it is either possible that the periodicity describing the order of the monolayer is
commensurate with the substrate (Fig. 4c) or incommensurate (Fig. 4d). In the ®rst case, the ratio of the
lattice spacing aA and the lattice spacing a is a rational number (aA=a � m=n with m; n integers) while
in the latter case this ratio is irrational. In this section, we are concerned with the peculiarities involved
in the description of phase transitions between incommensurate and disordered phases as well as
between incommensurate and commensurate phases, respectively. We shall brie¯y review the generic

Fig. 11. Variation of the correlation length exponent n (upper part) and the critical temperature Tc (lower part) of the lattice

gas model with coverage y � 1=2 and repulsive interactions between nearest (u�rnn�) and next-nearest neighbors (u�r2nn�) with

Rÿ 0:5 (note that for R � u�r2nn�=u�rnn� < 0:5 the structure of the ordered phase is the c�2� 2� structure in this model, only

for R > 0:5 it is the �2� 1� structure. Results of phenomenological ®nite size scaling renormalization group are shown by

open circles [223], and the data collapsing ®nite size scaling method by an open triangle [222] in the upper part of the ®gure.

Crosses denote Monte Carlo renormalization group estimates [224], open squares transfer matrix renormalization [225] and

solid circles series extrapolations [226]. Open triangles in the lower part are due to real space renormalization [227]. From

Landau and Binder [223].
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phenomenological description of these transitions and introduce the basic microscopic models that have
been studied in this context.

The ®rst question that we ask is how can one incorporate incommensurate ordering into the
description in the framework of Landau theory. For this purpose, it is useful to generalize the free
energy expansion, Eq. (3.41), from a homogeneous order parameter f to an inhomogeneous order
parameter ®eld f�x�,

Fff�x�g � F0 � kBT

Z
dx

1

2
rf2�x� � 1

4
uf4�x� � 1

2
K1�rf�x��2 � � � �

� �
: (3.41)

Note that in comparison with Eq. (3.10) we have slightly changed the normalization of the coef®cients
r; u which are dimensionless here when the free energy functional is extensive (proportional to the area
taken by the adsorbate layer) and the order parameter ®eld f�x� is also dimensionless and normalized
such that jf�x�j � 1 (e.g., for an Ising magnet f�x� is obtained by normalizing the magnetization in
units of its saturation value). The last term 1

2
K1�rf�x��2 in Eq. (3.41) is called the `̀ gradient energy''

and describes the free energy cost in making the order locally inhomogeneous. In fact, one can show
that the coef®cient k1 is related to the range of interaction R de®ned in Eq. (3.26) via K1 � R2=d in
d-dimensional systems [46,204,205].

However, there is no physical principle that requires that the interaction v�r� in Eq. (3.26) is
uniformly positive or uniformly negative; if v�r� is nonuniform in sign, it may actually happen that R2

as de®ned in Eq. (3.26) is negative. Then one cannot interpret R as an interaction range any longer, and
also Eq. (3.41) must not be truncated after the gradient square term: for obtaining a physically
meaningful free energy, a higher order gradient term must be included, assuming that the coef®cient K2

of this next term is positive [228]

F f�x�f g � F0 � kBT

Z
dx

1

2
rf2�x� � 1

4
uf4�x� � 1

2
K1�rf�x��2 � 1

4
K2�r2f�x��2

� �
: (3.42)

Considering the response of the order parameter to a conjugate ®eld varying with a wave-vector q, it is
easy to show that the wave-vector dependent response function w�q� or associated structure function
S�q� � kBTw�q� is no longer given by Eq. (3.13) but rather Sÿ1�q� involves both terms in k2 and in k4:

S�q� � �r � K1k2 � K2k4�ÿ1; (3.43)

where k � qÿ qB as previously. Unlike Eq. (3.13) we here consider the disordered phase only.
If K1 > 0 the ®rst divergence of Eq. (3.41) occurs for r � 0, and writing hence r � r0t � r0�T=Tc ÿ 1�

Eq. (3.43) gets the Ornstein±Zernike form Sÿ1�q� � Sÿ1�qB��1� x2k2 � . . .�; x � �K1=r�1=2 �
�K1=r0�1=2

tÿ1=2, the term with K2 for kx of order unity being a negligibly small correction and hence
has been omitted.

However, if K1 < 0 the ®rst divergence of S�q� no longer occurs for T � Tc (or t � 0, respectively)
and for k � 0, but rather a divergence occurs already at a higher temperature tc � K2

1=4K2r0 at a
wavenumber k � q� � �������������������ÿK1=2K2

p
. Writing t0 � t ÿ tc, Eq. (3.43) can be rewritten as

S�q�� �ÿ1� r0t0 � K2�k2 ÿ q�2�2 � r0t0�1� x2�k ÿ q��2�; k! q�: (3.44)

Now the mean ®eld result for the correlation length x is no longer given by the result x2 � K1=r which
applies for q� � 0 but rather by x2 � 4q�2K2=r � ÿ2K1=r. Thus one ®nds that S�q� has again a Curie±
Weiss-like divergence, but it does not develop at the wavevector qB, corresponding to the Bragg spot of
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the commensurate superstructure assumed by the choice of the order parameter f, but rather long range
order develops at a point a distance q� away from the Bragg spot: i.e., the structure is modulated with a
wavelength l� � 2p=q�. The correlation function f�0�f�x�h i corresponding to S�q� in real space
{compare Eq. (3.12)} becomes, apart from power law prefactors,

f�0�f�x�h i / exp�ÿx=x� cos�q� � x�; t0 ! 0: (3.45)

Now it turns out that it makes sense to consider the variation of a parameter p that has the effect that
K1�p� somewhere changes sign (Fig. 12). The special point �pL;TL� where K1�pL� � 0 and hence
q� � 0 leads to another type of multicritical point, the so-called `̀ Lifshitz point'' [228], see Fig. 12. At
the Lifshitz point, Eq. (3.44) gets replaced by

�S�q��ÿ1 � r � K2k4 � r�1� x4k4�; x � �K2=r�1=4 / tÿ1=4; t! 0: (3.46)

At T � TL we have r � 0 and hence S�q� � Kÿ1
2 kÿ4. Hence the predictions of the Landau theory for the

critical exponents of an (isotropic!) Lifshitz point are

aL � 0; bL � 1=2; gL � 1; dL � 3; nL � 1
4
; ZL � ÿ4: (3.47)

We note that thermal critical exponents are identical to normal critical behavior, and scaling relations
expressed by Eqs. (3.23) and (3.24) hold. However, Eq. (3.47) is of no relevance for actual adsorbed
layers on surfaces, because there are not any Lifshitz points at non-zero temperature in d � 2
dimensions [33,170].

Now the spatially isotropic form of the gradient expansion, Eq. (3.42), makes sense for adsorbed
layers on (100) or (111) surfaces of cubic crystals, where the corrugation potential re¯ects the
symmetry of the square or triangular lattices formed by the topmost layer of substrate atoms, but it is
clearly not appropriate for (110) surfaces ,where x and y directions clearly are not equivalent, and one
should allow for an anisotropic gradient energy term. Rather than the isotropic term 1

2
K1�p��rf�x��2

Fig. 12. Schematic phase diagram of a system where by a variation of a parameter p the coef®cient K1�p� of the gradient

energy (Eq. (3.42)) changes sign at a Lifshitz point K1�pL� � 0; Tc�pL� � TL. For p < pL one has a ferromagnetic structure

while for p > pL where K1�p� < 0 one has a modulated structure, with a characteristic wavenumber q� describing the

modulation. For p! pL from above one has q� / �p=pL ÿ 1�b� with an exponent b��b� � 1=2 in Landau theory).
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one has

Gradient energy � 1

2
K1k�p� @f�x�

@y

� �2

� 1

2
K1?�p� @f�x�

@x

� �2

; (3.48)

where we have assumed that it is the y-direction where K1k�p� may change sign when p is varied, and
then a term 1

4
K2k�p��@1f�x�=@y2�2 needs to be included. This case yields still a phase diagram of the

type shown in Fig. 12, but with a uniaxial Lifshitz point [228]. The structure factor S�q� then is no
longer given by Eq. (3.46) but rather by (note that K1k�pL� � 0 but K1?�pL� > 0 at the Lifshitz point)

S�q�� �ÿ1� r � K1?k2
? � K2kk4

k � r 1� x2
?k2
? � x4

kk
4
k

h i
; (3.49)

where the wavevector k has been split into parallel and perpendicular components, k � �kx; ky� �
�k?; kk�. The correlation lengths de®ned in Eq. (3.49) then are xk � �K2k=r�1=4; x? � �K1?=r�1=2

. Using
r � r0t, one thus concludes that at the uniaxial Lifshitz point there are two correlation lengths diverging
with different exponents, xk / tÿnk ; x? / tÿn? with nk � 1=4; n? � 1=2 in mean ®eld theory
[33,170,228].

Of course, it is possible to again illustrate these phenomenological considerations by constructing
microscopic model Hamiltonians, that yield a phase diagram that qualitatively has the structure of Fig.
12, within mean ®eld theory. A famous example is the ANNNI model [33,170] (axial next-nearest
neighbor Ising model). In its standard version, this is a lattice gas model at the square (or rectangular,
respectively) lattice with nearest neighbor interaction in the x-direction, while in the y-direction nearest
and next nearest neighbor interactions compete. Writing then the index i representing a lattice site in
terms of two coordinates i � �ix; iy�, in Ising spin representation the Hamiltonian becomes

HANNNI � J0

X
ix;iy

S�ix; iy�S�ix � 1; iy� ÿ J1

X
ix;iy

S�ix; iy�S�ix; iy � 1� ÿ J2

X
ix;iy

S�ix; iy�S�ix; iy � 2�:

(3.50)

In principle, also a term ÿH
P

ix;iy
S�ix; iy� should be added, representing a chemical potential

controlling the coverage, but for simplicity this term has been omitted here (thus we consider the
temperature driven phase transition at a coverage y � 1=2 in the lattice gas from the disordered phase
to a phase separated state of two coexisting phases with high and low coverage for p � pL here).

Denoting the ratio of the `̀ exchange constants'' J2=J1 � K, we obtain a phase diagram of the type
shown in Fig. 12 in the molecular ®eld approximation, identifying the parameter p with this ratio K

(Fig. 13). The Lifshitz point occurs for K � KL � ÿ1=4 [33,170,229].
In Fig. 13 we have included a complication that has not been mentioned so far: there occurs a change

in the character of the correlation function at the line T � Td�K� form an oscillatory decay in the y-
direction

f�0�f�y�h i / exp�ÿy=xk� cos�q�y�; T > Td�K�; (3.51)

to a monotonic decay,

f�0�f�y�h i / exp�ÿy=xk�; Tcb�K� < T < Td�K�; K=KL < 1: (3.52)

At ®xed K the wavenumber q� vanishes continuously as the disorder line is approached from above,
q� / T ÿ Td�K�� �1=2

.
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However, we emphasize that this description of phase transitions between disordered,
`̀ ferromagnetic'' and modulated phases is the result of the molecular ®eld approximation, and the
actual phase diagram of the ANNNI model in d � 2 dimensions, Eq. (3.50), is very different, as has
been found by Monte Carlo [33,170] and transfer matrix calculations [230] (Fig. 14). Comparing Figs.
13 and 14 we see that mean ®eld theory indeed is a very bad guide for the description of phase
transitions in two-dimensional systems! First of all, statistical ¯uctuations have destabilized the Lifshitz
point completely, it is suppressed to zero temperature. Secondly, the nature of the modulated phase has
drastically changed: while in mean ®eld theory one has true long range order described by an order
parameter f�y�h i � A cos�q�y� j�, in reality f�y�h i � 0 in the modulated phase, one has a power law

Fig. 13. Phase diagram of the ANNNI model (Eq. (3.50)) in the molecular ®eld approximation, in the plane of variables

reduced temperature kBT=J1 and coupling constant ratio (K � J2=J1;KL � ÿ1=4 is the value of K at the Lifshitz point). By

subtracting a term zkJ0=J1 �zk is the coordination number in the direction (s) perpendicular to the modulation direction; zk � 2

for a square lattice) this phase diagram is identical for d � 2 and d � 3 dimensions. At the line T � Tcb�K� a phase transition

from the `̀ paramagnetic'' (P) phase to the `̀ ferromagnetic'' (F) occurs. At the `̀ disorder line'' Td�K� the decay of the correla-

tion function changes from oscillatory ( f�0�f�y�h i / exp�ÿy=xk� cos�q�y�) to simple exponential ( f�0�f�y�h iexp�ÿy=xk�)
again disregarding preexponential power laws. At the line T � Tmb�K� the correlation length xk diverges, and long range order

of modulated type (M) sets in, characterized by an order parameter f�y�h i cos�q�y� j�, where j is a phase factor. The lines

separating the ferromagnetic phase from the modulated phase and higher order commensurate phases are not included on this

phase diagram. Note that the transition from the region with oscillatory correlations (D) to the region with monotonically

decaying correlations (P) at the disorder line Td�K� is not a phase transition in the thermodynamic sense. From Binder and

Frisch [229].
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decay of the correlation function:

f�0�f�y�h i / yÿZ�T� cos�q�y� j�: (3.53)

The transition at T � Td�K� from exponentially decaying correlations (Eq. (3.51)) to this power law is a
transition of the Kosterlitz±Thouless type [37], as it occurs in the two dimensional XY-model. Loosely
speaking, one can draw an analogy between this ferromagnet with a two-component order parameter
and the modulated phase because amplitude A and phase j of the ordering also describe a two
component order parameter space (recall that one can rewrite the magnetization of the XY model
M � �Mx;My� as M � �A cosj;A sinj�}.

Of particular interest, of course, is the transition from the modulated phase to the commensurate
phase 2h i in Fig. 14, where two rows of up spins (the rows running in x-direction) alternate periodically
with 2 rows of down spins. Thus when one proceeds in the y-direction the order is of the type
��ÿÿ��ÿÿ � � � : The transition from the phase 2h i to the modulated phase in the ANNNI model
is a special case of a commensurate±incommensurate transition. Since commensurate±incommensurate
transitions (Fig. 4c, d) are very common in monolayers adsorbed at surfaces, we now consider the
phenomenological theory of such transitions in more detail.

We describe the modulation of the commensurate structure by two order parameter components
f1;f2 in terms of an amplitude A and a phase j �f1 � A

ij
l ;f2 � A

ÿij
l �, assuming that the amplitude A

is constant while j�x� may vary in x-direction in the considered uniaxial system. (Unlike for the
ANNNI model above, we now assume it is the x-direction where an incommensurate modulation
occurs, but the labeling of the coordinate axes is of course arbitrary.) Then a free energy can be
postulated as [170,231±233]

DF
kBT
�
Z

dx gA2 dj
dx

� �2

�2sA2 dj
dx
� 2oAn cos nj�x�� �

( )
; (3.54)

Fig. 14. Phase diagram of the two-dimensional ANNNI model as found from transfer matrix calculations. The broken curve

in the paramagnetic phase is the disorder line Td�K�, where K � J2=J1. Note that the Lifshitz point is suppressed, and rather

all phase boundaries (and Td�K�) merge at T � 0 in the point K � ÿ1=2, where the ground state changes from the

ferromagnetic phase (all spins up or all spins down) to the 2h i structure (2 rows of up spins alternate with two rows of down

spins in the y direction). From Beale et al. [230].
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where g;s and o are phenomenological coef®cients, and different cases n � 1; 2; . . . can be
distinguished. Minimizing this free energy functional with respect to j�x� yields an Euler±Lagrange
equation:

d2�nj�
dx2

� v sin nj�x�� � � 0; v � n2oAnÿ2=g: (3.55)

One can show that a commensurate±incommensurate transition occurs at vc � n2p2s2=16g2. The
incommensurate phase (for v < vc) consists of a periodic arrangement of regions where the phase j�x�
increases by 2p=n (see Fig. 15) for the case n � 1. This structure can be viewed as a domain wall lattice
or `̀ soliton lattice'', whose lattice constant ld diverges logarithmically on approaching the
commensurate±incommensurate transition, ld / j ln�vc ÿ v�j. However, a consideration of ¯uctuations
(domain wall meandering, cf. Fig. 16 [234]) leads to a rather different result [235,236]

ld / jq� ÿ qBjÿ1 / �vc ÿ v�ÿ1=2: (3.56)

If we would consider a single one-dimensional domain wall running along the y-axis on average, a
consideration of ¯uctuations shows that over a distance L a root mean square displacement of this
interface in the x-direction of order w / ���

L
p

would occur. In the domain wall lattice, these excursions
of the interfaces give rise to an effective repulsive interaction (of entropic origin) between neighboring
domain walls, which scales like U�ld� � kBT�x=ld�2 [235]. Treating the statistical mechanics of
domain walls interacting with this potential yields Eq. (3.56).

Here we shall ®rst describe in more detail the physics of the meandering of a single domain wall,
which also is important for the description of phase coexistence in two-dimensional systems in general
(Fig. 16). For this purpose, we derive the description of the free energy of an interface (or domain wall,
respectively) in terms of the capillary wave Hamiltonian [236,237]. We consider the one-dimensional
interface x � h�y� and allow for the fact that the interfacial tensions fint will (at least for a lattice
system) depend on the angle y between the tangent to the interface and the y-axis y � arctan�dh=dy�� �.
Then the total interfacial (free) energy can be found in terms of an integral along the contour of the

Fig. 15. Variation of the phase j�x� of a modulated structure near a commensurate±incommensurate phase transition. The

structure can be characterized by a lattice of domain walls periodically spaced at a distance ld.

A. Patrykiejew et al. / Surface Science Reports 37 (2000) 207±344 247



interface:

Eint=kBT �
Z

dlfint�y�
��������������������������
1� �dh=dy�2

q
: (3.57)

Here we have used the fact that the line element dl along the interface satis®es dl2 � �dh�2 � �dy�2. Of
course, in this coarse-grained description of the interface both overhangs and bubbles are deliberately
ignored, and one even assumes that this coarse-grained interface is rather ¯at, such that �dh=dy� � 1 and
hence one can expand

��������������������������
1� �dh=dy�2

q
� 1� 1

2
�dh=dy�2; fint�y� � fint�0� � f 0int�0�dh=dy� 1

2
fint
00�dh=dy�2

� � � �. The linear term in dh=dy yields only boundary terms to the integral, Eq. (3.57), and can thus be
omitted. Thus one obtains

Eint

kBT
� fint�0�

Z
dy� k

2

Z
dy

dh

dy

� �2

; (3.58)

where the coef®cient k � fint�0� � fint
00�0� is called the `̀ interfacial stiffness''. For the nearest neighbor

Ising model, the temperature dependence of both fint�0� and k can be worked out, and behave
qualitatively as shown in Fig. 17.

The second term in Eq. (3.58) is called the `̀ capillary wave Hamiltonian''. Introducing Fourier
components of the height variable h, it is written as

Hcw=kBT � 1

2
k

1

�2p�dÿ1

Z
ddÿ2qq2jhqj2; (3.59)

Fig. 16. Snapshot pictures of a meandering interface in the nearest neighbor lattice gas model, choosing a geometry L� 24

in the x-direction across the interface, and Ly � 228 in the y-direction along the interface. At x � 1 and x � Lx boundary ®elds

H1 � ÿ3J�HLx � �3J� are applied to stabilize the interface. Sites taken by adsorbed atoms are shown in black, empty sites

are shown in white. Three temperatures are shown: T � 0:68Tc (a), 0:78Tc (b) and T � 0:88Tc (c). From [234]. Part (d) shows

a coarse-grained description of an interface in the continuum limit, as assumed by capillary wave theory.
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where we have generalized the treatment to general dimensionality d (but note that for lattice systems,
such as the Ising model in d � 3, Eq. (3.59) applies only for temperatures above the well-known
interfacial roughening transition temperature TR, cf. Fig. 17, while k � 1 for T < TR).

Treating the statistical mechanics of Eq. (3.59), the problem is analogous to independent harmonic
oscillators with spring constants kq2. From the equipartition theorem one can then conclude that each
degree of freedom has an average potential energy of kBT=2, i.e.

kBT 1
2
kq2hjhqj2i � 1

2
kBT; (3.60)

which implies hjhqj2i � �kq2�ÿ1
. On the other hand, the mean square displacement of the interface is

Fig. 17. Schematic temperature variation of interfacial stiffness kBTk and interfacial free energy kBTfint�0�, for an interface

oriented perpendicular to a lattice direction of a square (a) or simple cubic (b) Ising lattice, respectively. While for d � 2

dimensions the one-dimensional interface is rough for all nonzero temperatures, in d � 3 dimensions the two-dimensional

interface is rough only for temperatures T exceeding the roughening transition temperature TR. For T < TR there exists then a

nonzero free energy kBTS of surface steps, which vanishes at T � TR with an essential singularity. While k is in®nite

throughout the non-rough phase, kBTk reaches a universal value as T ! T�R . Note that k and fint to leading order in their

critical behavior become identical as T ! Tÿc , namely fint � f̂ int�ÿt�m with t � T=Tc ÿ 1 and m � �d ÿ 1�n, i.e. m � 1 in

d � 2 and m � 1:26 in d � 3; n being the critical exponent of the correlation length.
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w2 � hh2�y�i ÿ hh�y�2i � 1

�2p�dÿ1

Z
ddÿ2qhjhqj2i � 1

�2p�dÿ1

Z
ddÿ2q

1

kq2
: (3.61)

Over a length scale L along the y-direction in d � 2, we hence obtain the power law

w2�L� � 1

2p

Z 2p=x

2p=L

dq=�kq2� � L=k; (3.62)

where we have assumed that L� x, the correlation length in the bulk (2p=x has to be used as an upper
cutoff of the integration in q-space, since the coarse-grained description of the interface in Fig. 16d
applies only after a coarse-graining of the Ising model such as in Fig 16a±c over a length scale x has
been carried out). For completeness and later use, we mention that in d � 3 the capillary wave
excitations still lead to a logarithmic divergence of the mean square displacement of the interfacial
width w with L,

w2�L� / kÿ1 ln�L=x�: (3.63)

After this digression on the physics of one meandering domain wall, we now consider the situation of a
p� 1 incommensurate phase showing meandering domain walls at mean spacing ld (Fig. 18). If U�ld�
denotes the interaction of one domain wall per unit length with a neighbor at mean separation ld, the
singular part of the free energy density near the commensurate±incommensurate phase transition can be
estimated for n domain walls per length Lx as

fsing�T ;m; ld� � Lÿ1
x nfint � nU�ld�=kBT� �: (3.64)

Here, fint � fint�T; m� is the interfacial tension of an isolated domain wall parallel to the y-axis. In the
commensurate phase the tension fint is positive and an isolated wall is stable. However, as the
commensurate±incommensurate transition is approached fint vanishes and becomes negative in the
incommensurate phase. The resulting instability causes the appearance of many walls. To leading order
we assume a linear variation

fint � f �int�1ÿ T=Tc�m��; (3.65)

with Tc�m� being the transition temperature of the commensurate±incommensurate transition, and f �int is
some amplitude factor. Using the result U�ld� / kBT�x=ld�2 quoted above and noting that n=Lx � lÿ1

d ,
we ®nd

fsing�T ;m; ld� � f �int�1ÿ T=Tc�m��=ld � x2=l3
d: (3.66)

Note that in the second term on the right-hand side of Eq. (3.66) there clearly is a prefactor of order
unity that we have suppressed here. Minimizing now fsing�T; m; ld� with respect to ld yields the distance
between neighboring domain walls in thermal equilibrium,

lÿ1
d � �f �int=3x2�1=2

�������������������������
T=Tc�m� ÿ 1

p
; (3.67)

which is the result announced in Eq. (3.56). Using this result in Eq. (3.66), one concludes that [239,240]

fsing�T ;m� � 0 for T � Tc�m�;
ÿÂ�T=Tc�m� ÿ 1�3=2

for T � Tc�m�;
�

(3.68)
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with Â � 2�f �3int=3x2�1=2
. This result shows that the transition is a second-order transition, with a

divergent speci®c heat (C � T�@2f=@T2�m / �T=Tc�m� ÿ 1�ÿ1=2
, i.e. a � 1=2, cf. Eq. (3.16)).

However, there is no divergence on the commensurate side of the transition.
It is also of interest to discuss the correlation lengths of order parameter ¯uctuations in the

incommensurate phase, noting that the situation considered in Fig. 18 is intrinsically anisotropic. The
transverse correlation length x? is simply proportional to ld and hence [238]

x? � x̂?�T=Tc�m� ÿ 1�ÿn? ; n? � 1=2: (3.69)

From the diffusive character of the random-walk like one-dimensional interface in Fig. 16 or 18a we

Fig. 18. (a) Schematic representation of a p� 1 incommensurate phase for p � 4 showing meandering domain walls at mean

spacing ld. The four types of domains are denoted as A, B, C and D, respectively. Eg. in the ANNNI model A can be

represented by a sequence ""##"" . . ., while B, C and D represent the same sequence but shifted by one lattice unit,

corresponding to a different assignment of the four sublattices of the 2h i structure. (b) Phase diagram showing a commensurate

(C)±incommensurate (IC) phase transition in the plane of variables m (chemical potential) and temperature. (c) Variation of the

`̀ incommensurability'' �q � 2p=pld for the chemical potential m1. After Fisher [236], in changed form.
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conclude that

xjj � const:�x?�2; i:e: xjj � x̂jj�T=Tc�m� ÿ 1�ÿnjj ; njj � 2n? � 1: (3.70)

These results can also be derived by a more rigorous analysis [239,240]. For this anisotropic situation,
the hyperscaling relation (Eq. (3.25)) does not hold, and must be replaced by

2ÿ a � njj � n?: (3.71)

Next we consider the effect of dislocations in the incommensurate structure: these are topological
defects where some domain walls merge in a point and terminate. In a p� 1 structure Fig. 18a it is
possible that p walls come together: so one could have the ®rst four walls shown in Fig. 18a merge and
thus the B, C, D domains terminate there as well and the ®rst two A-domains merge thereafter. In the
commensurate phase, where we may have a situation of only an A domain, for instance, this opens the
possibility that local precursor-type ¯uctuations of the incommensurate phase occur already in the
commensurate phase. These ¯uctuations may change the nature of the singularities at the transition, or
even destroy the incommensurate phase altogether: renormalization group treatments show that
[238,241±243] for p � 1 and p � 2 no incommensurate phase is possible: only a commensurate phase
exists which must have a transition directly into the disordered phase, without an intervening
incommensurate phase. In fact, the two-dimensional ANNNI model (Fig. 14) is an illustration of this
®nding, the ferromagnetic phase (p � 1) cannot make a transition to a modulated phase at all, while the
phase 2h i (which is of the type p � 4) can. In the commensurate phase, these dislocations are then
responsible for singularities of the free energy fsing�T ;m�; so Eq. (3.68) gets modi®ed: e.g., for p � 3 the
speci®c heat gets a singularity of a cusp-type, C / �1ÿ T=Tc�m�� ln j1ÿ T=Tc�m�j for T � Tc�m�.
Finally, we mention that the dislocations in the incommensurate phase also occur in bound pairs and
their unbinding characterizes the `̀ melting'' of the incommensurate phase into the disordered phase via
a Kosterlitz±Thouless type transition [52,170,244].

So far the only microscopic model exhibiting a commensurate±incommensurate phase transition, that
we have discussed in this review, is the ANNNI model (Fig. 14).

However, due to the discrete spin nature of that model obviously no incommensurate phase can exist
in that model in the ground state at T � 0, and in fact the phase diagram shows at T � 0 just the
ferromagnetic phase and the commensurate 2h i phase (Fig. 14).

However, this clearly is not the whole story, and for weak corrugation potentials it does make sense to
consider models that do allow for the existence of incommensurate (IC) phases and C±IC phase
transitions at T � 0. A model that is directly motivated by Fig. 4c, d is the Frenkel±Kontorova
(FK) model [245]. Being interested in T � 0, it suf®ces (for an anisotropic substrate such as provided
by (110) surfaces of cubic crystals) to consider the one-dimensional version only. Thus, we write
down the potential energy of a harmonic chain of particles in an external sinusoidal potential
(which represents the corrugation potential due to the substrate acting on the adatoms). The potential
then is (k is an effective `̀ spring constant'' describing the strength of interparticle interaction in the
absence of the corrugation potential, A describes the strength of the corrugation potential, ri is the
position of particle i)

U � 1

2
k
X

i

�ri�1 ÿ ri ÿ b�2 � 1

2
A
X

i

1ÿ cos
2pri

a

� �
: (3.72)
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The interatomic potential thus favors an interparticle spacing b, which in general differs from the
distance a between the minima of the corrugation potential. To balance these competing interactions,
the particles may choose non-trivial positions already in the ground state.

Of course, Eq. (3.72) is not used as a microscopically realistic description of a particular adsorbate±
substrate system, but rather as a generic model suitable to develop the basic concepts and ideas. We
proceed to obtain the solution that minimizes U (which is the relevant thermodynamic potential at
T � 0). The condition @U=@ri has the interpretation that the force acting on each particle vanishes in
equilibrium. This yields �ui � ri=a�

ui�1 ÿ 2ui � uiÿ1 � p
2l2

0

sin�2pui�; l0 � �ka2=2A�1=2: (3.73)

Replacing differences by differentials Eq. (3.73) is reduced to the sine-Gordon equation [246]

d2u=dn2 � �p=2l2
0� sin�2pu�: (3.74)

One ®nds that the commensurate phase yields the absolute minimum of the energy for small enough
mis®t, d � jbÿ aj=a � dc � 2=�l0p�; otherwise the ground state solution resulting from Eqs. (3.72)±
(3.74) resembles Fig. (3.12) for j�x�=2p, as expected, since Eq. (3.74) is identical with Eq. (3.55) for
n � 1. For d � dc, the solution of Eq. (3.74) reduces to the well-known `̀ domain-wall'' or `̀ kink'' or
`̀ soliton'' solution,

u�n� � 2

p
arctan exp

pn

l0

� �
: (3.75)

To create such a wall, one has to imagine that one particle has to be deleted (if b is less than a) or added
(if b is larger than a). The thickness of the wall is l0. For larger mis®ts, d > dc, the ground state consists
of a lattice (`̀ soliton lattice'' ) of regularly spaced domain walls of thickness hl0, where h is given as
the solution of the equation

l0d � 2E�h�=�ph�; (3.76)

E�h� being the complete elliptic integral of the second kind. The spacing ld of domain walls is given
by

ld � 2l0hK�h�=p; (3.77)

with K�h� being the complete elliptic integral of the ®rst kind. The separation of particles on the
average then is ald=�ld ÿ 1�. Since ld changes continuously with d, the ground states in general are
incommensurate with respect to the sinusoidal potential. Thus at d � dc the C ! IC transition takes
place, with ld / j ln�dÿ dc�j. However, it should be noted that in fact the continuum approximation
made by replacing Eq. (3.73) by Eq. (3.74) in general is not valid, and on solving Eq. (3.73) one does
not ®nd a smooth variation of the wavenumber q of the structure with the mis®t d, but rather a
discontinuous `̀ devil's staircase'' behavior is predicted, as the particles are not allowed to be at all
possible `̀ heights'' of the potential U, but tend to stick to the bottoms of the potential wells, and thus
the walls are `̀ locked'' to the lattice [170,247]. However, as most of the properties deriving from Eqs.
(3.72), (3.73), (3.74), (3.75), (3.76) and (3.77) are substantially changed by thermal ¯uctuations at
nonzero temperature, we do not go into further details here.
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3.4. Melting phenomena

In this section we are concerned with the melting of two-dimensional solid phases which are
incommensurate with the periodicity provided by the substrate (melting of commensurate solids in
many aspects is not fundamentally different from the order±disorder transitions of the lattice gas
models and variants thereof, as have been discussed already in Sections 3.1 and 3.2 of the present
article). However, melting of incommensurate two-dimensional solids can have a character that is
very different from these commensurate solids and from the melting transition of three-dimensional
solids (which has to be a ®rst-order transition, from general symmetry requirements [244]).
However, in two dimensions it is conceivable that melting occurs via two consecutive Kosterlitz±
Thouless-type [37] transitions: the ®rst transition takes the solid (which in two dimensions lacks
positional long-range order, though orientational long range order is still present!) to a hexatic phase
[39]: while in the two-dimensional crystal the positional correlation function exhibits a power law
decay, in the hexatic phase this correlation function already decays exponentially with distance, as it
does in the ordinary disordered ¯uid phase. However, the correlation function of the orientational order
parameter still shows a power law in the hexatic phase, and only via a second Kosterlitz±Thouless type
transition does the system become an ordinary ¯uid where all correlation functions have an exponential
decay.

This scenario of two-dimensional melting, as sketched above, is due to Halperin, Nelson and
Young [38,39,244,248,249] and has been rather controversial until today, because the direct route
from the crystal to the ¯uid via a single ®rst order phase transition, as in the three-dimensional
case, is not ruled out a priori: hence, the conditions under which two-dimensional melting is
continuous and when it is ®rst order are not yet clari®ed. Even for the simplest model of a two-
dimensional melting transition, the hard disk ¯uid which is under study since the Monte Carlo and
Molecular dynamics computer simulation methods where invented [250,251], the character of
the transition is still under debate [252±254]. Nevertheless, we discuss this concept that melting is
defect mediated here Ð even if it turns out that melting would occur via ®rst order transitions in
cases of practical interest, it is clear that these transitions are very weak ®rst order transitions then,
and although the relevant correlation lengths (and associated response functions) are not strictly
divergent then at the transition point, they must become rather large. In addition, these defect
concepts are rather useful also for some alternative theories describing melting as a ®rst order
transition: while the melting of the hexatic phase can be viewed as an `̀ unbinding transition'' of bound
dislocation pairs with opposite Burgers vectors, the ®rst order melting can be described [255,256] as a
condensation of grain boundaries (via nucleation, just as at a ®rst order condensation of liquid from
saturated gas), and we recall that a grain boundary in d � 2 dimensions is nothing but a linear
arrangement of dislocations.

After these introductory remarks we shall ®rst describe the general ideas about Kosterlitz±Thouless
transitions [37,58,244], using the plane rotator model [58] as a generic example, but we shall mention
the generalization to solids whenever appropriate. The common feature about solids, plane rotator
models (or isotropic XA magnets) and two-dimensional super¯uids is that ordering of these systems
involves the breaking of a continuous Abelian symmetry. In this general condition, long range order is
destroyed by statistical ¯uctuations, but power-law decay of correlations still occurs [244].

The Hamiltonian of the plane rotator model, where each site i carries a planar unit vector with two
components �cos yi; sin yi�, reads
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H � ÿJ
X

i;jh i
cos�yi ÿ yj�; (3.78)

where we assume the nearest neighbor exchange constant J ferromagnetic, J > 0. At very low
temperatures spins at neighboring sites are strongly correlated and hence one may expand the cosine
keeping only the quadratic term. For long wavelength ¯uctuations one may also make a continuum
approximation, replacing the yi by y�x� and hence {yk is the Fourier transform of y�x�}

H � J

2

Z
dx ry�x�� �2� J

2

Z
dk

�2p�2 k2jykj2: (3.79)

If we also neglect the fact that yi � 2pn in Eq. (3.78) is equivalent to yi, for integer n, one ®nds by
extending the range of integration over y from ÿ1 to �1 that the partition function can be written as
functional integration, involving Gaussian integrals,

Z �
Z �1
ÿ1

Dy�x�exp ÿ J

2kBT

Z
dx ry�x�� �2

� �
: (3.80)

From this spin wave approximation [257] the correlation function

G�x� � hexp�i�y�x� ÿ y�0��i � expfÿ 1
2
h�y�x� ÿ y�0��2ig (3.81)

can be calculated (in the second step of Eq. (3.81) we have used already the Gaussian character of the
Hamiltonian, Eq. (3.79)). We obtain [58]

h�y�x� ÿ y�0��2i �
Z

dk

�2p�2 j1ÿ exp�ik � x�j2 jykjh i2� 1

2p

Z 1=a

1=x

2k dkhjykj2i: (3.82)

Here we have approximated the factor jexp�ikx� ÿ 1j2 by 2, its average value, in the interval
1=x < k < 1=a (a being the lattice spacing of the underlying lattice). Using now the equipartition
theorem, hjy�x�j2i � kBT=Jk2, we ®nd [58]

h�y�x� ÿ y�0��2i � kBT

pJ

Z 1=a

1=x

dk=k � kBT

pJ
ln�x=a� (3.83)

and hence, using Eq. (3.81)

G�x� � xÿZ�T�; x!1; Z�T� � kBT=�2pJ�: (3.84)

Thus we see that at low temperatures Ð where the spin wave approximation is expected to be
reasonable emdash there is no long range order as in d � 3 dimension (where G�x� ! jCjh i2 as
x!1, the square of the order parameter), but rather a power law decay of the correlation function,
with an exponent that increases with temperature.

We now turn to the analog of these phenomena in crystals: there the phenomenological continuum
Hamiltonian analog to Eq. (3.79) is simply given in terms of standard elasticity theory, described by the
free energy functional [258]
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F � 1

2

Z
dx 2Zu2

ij�x� � lu2
kk�x�

h i
; (3.85)

where Z and l are the LameÂ coef®cients, and uij�x� is the symmetric strain tensor,

uij�x� � 1
2
@ui=@xj � @uj=@xi

� �
; (3.86)

implying also the summation convention in Eq. ((3.85)). Now in a solid, the quantity of primary interest
is the structure factor,

S�q� �
X

x

exp�iq � x�heiq��u�x�ÿu�0��i �
X

x

exp�iqx�exp ÿ q2

4
�u�x� ÿ u�0��h i2

� �
: (3.87)

On the other hand, writing the density r�x� of a collection of point particles at positions
R�x� � x� u�x� as r�x� �Px d xÿ Rÿ u�x�� �, one recognizes that S�q� is just the Fourier transform
of the density±density correlation function, and de®ning [244]

rG�r� � exp iG � u�r�� �; (3.88)

where G is a vector of the reciprocal lattice associated with the lattice points {R}, one sees that S�q� is
the Fourier transform of the Debye±Waller-factor

G�x� � rG�x�r�G�0�

 �

: (3.89)

While in a three-dimensional crystal G�x!1� tends to a nonzero constant, we here again encounter a
power-law decay [244]

G�x� / xÿZG�T�; ZG�T� �
kBT jGj2�3m� l�

4pm�2m� l� : (3.90)

Note that ZG�T� depends on the temperature, on the LameÂ coef®cients, and on the particular reciprocal
lattice vector involved Ð thus this behavior here is much less universal than in the plane rotator case.
This power-law decay leads to power law singularities in S�q� at the reciprocal lattice points {G}. For
q � G, one ®nds

S�q� � jqÿ Gj2ÿZG�T�: (3.91)

Note that these singularities are the stronger the smaller the reciprocal lattice vectors G one is
considering.

In Eqs. (3.85),(3.86),(3.87),(3.88),(3.89),(3.90) and (3.91), the effect of the periodic corrugation
potential has been neglected completely. Although in an incommensurate solid the translational order
of the substrate can be disregarded at long wavelengths, there is an orientational epitaxy [40]. To model
induced orientational order in isotropic incommensurate adsorbed solid layers, the free energy
functional of Eq. (3.85) must be replaced by [39,244]

F � 1

2

Z
dx 2m uij�x�

� �2� l ukk�x�� �2ÿ h cos py�x�� �
n o

; (3.92)

where the last term describes a p-fold symmetric term breaking the rotational invariance. The local
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orientation angle y�x�

y�x� � 1

2

@uy�x�
@x

ÿ @ux�x�
@y

� �
(3.93)

is measured from the direction of optimal alignment. The strength of this local orientational potential is
given by h. Note that p � 6 for triangular solids resting on hexagonal substrates like graphite or (111)
surfaces of f :c:c: metals, while p � 12 for triangular solids on substrates with a square symmetry,
however. We also note that the direction of optimal alignment need not coincide with a crystallographic
axis of the substrate lattice.

Note that y�x� as quoted in Eq. (3.93) plays a role in de®ning the (complex) local order parameters
C6�x�;C4�x� for orientational ordering

C6�x� � exp 6iy�x�� �; C4�x� � exp 4iy�x�� �: (3.94)

Here C6�x� is appropriate for studying the melting of triangular lattices, since one is then only
interested in bond order modulo 60� rotations, while C4�x� would be appropriate for melting of a
square lattice. We also note that y�x� is well-de®ned not only for a continuum description (as invoked in
Eq. (3.93)) but can also easily be de®ned for an atomistic model. One then de®nes y�x� as the angle
between the axis connecting an atom located at x and one of its 6 (triangular lattice) or 4 (square lattice)
nearest neighbors relative to a reference axis (which is arbitrary in the case of a perfectly smooth
substrate and the direction of optimal alignment in the case of a corrugated substrate). Since in a dense
¯uid also the notion of nearest neighbors of an atom is well de®ned (counting just those atoms which
contribute to the ®rst peak of the radial distribution function), one can consider these local order
parameters C6�x� andC4�x� (Eq. (3.94)) even in the ¯uid phase, and study the respective correlation
functions

G6�x� � C�6�x�C6�0�

 �

; G4�x� � C�4�x�C4�0�

 �

: (3.95)

Of course, in the disordered ¯uid phase one expects that there is only short range orientational order,
while at large distances one encounters an exponential decay:

G6�x� / exp�ÿx=x6�; G4�x� / exp�ÿx=x4�; fluid phase: (3.96)

While we have seen that in the solid phase the translational correlation function G�x� (Eq. (3.89)) has a
power law decay (Eq. (3.89), in the case of a smooth substrate), two-dimensional solids do exhibit true
orientational long range order, i.e. (we specialize to the case of a triangular lattice here)

G6�x� ! jC6jh i2 for x!1; solid phase; (3.97)

which implies (cf. Eqs. (3.93) and (3.94)) that ¯uctuations in the local orientation angle y�x� are ®nite
[206,244]

hjy�x�j2i � 1
4
hjr � u�x�j2i <1: (3.98)

This behavior is in contrast to the diverging ¯uctuations in the displacement ®eld (we have u�0� � 0 by
arbitrarily putting the coordinate origin at one atom in the lattice)

hju�x�j2i ! 1 as x!1 (3.99)
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noted already by Peierls and Landau [259,260]. At this point, we note that the hexatic phase is
characterized by jC6jh i � 0 but a power-law decay rather than an exponential decay of G6�x�,

G6�x� / xÿZ6�T�: (3.100)

We now return to the effective Hamiltonian Eq. (3.92) describing the long wavelength properties of a
solid monolayer exposed to the orientational potential due to the corrugated substrate crystal surface.
Since the ¯uctuations in y�x� are ®nite (Eq. (3.98)) and actually rather small, it is legitimate to expand
the cosine function in Eq. (3.92) to quadratic order to obtain a generalized harmonic Hamiltonian [244]

F � 1

2

Z
dx 2m uij�x�

� �2� l ukk�x�� �2� g
@uy�x�
@x

ÿ @ux�x�
@y

� �2
( )

(3.101)

with an `̀ orientational elastic constant'' g � hp2=8. The diverging Landau±Peierls ¯uctuations in the
displacement ®eld remain, the free energy Eq. (3.101) leads to the same algebraic decay of translational
order as given in Eq. (3.90) but the exponent ZG�T� gets modi®ed, for x!1,

G�x� / xÿZG�T�;
kBTjGj2�3m� l� g�
4p�m� g��2m� l� : (3.102)

Eqs. (3.85)±(3.91) or (3.97)±(3.102) are valid descriptions of the well-ordered solid phase on smooth or
corrugated substrates, respectively. We now turn to the question how these phases decay into the less
ordered hexatic and (®nally) ¯uid phases. It turns out that these phase transitions are driven by the
unbinding of topological defects, namely dislocations (solid) and disclinations (hexatic)
[38,39,244,248,249]. The same problem of a defect-mediated phase transition already occurs in the
simple example of the plane rotator model, Eq. (3.78), to which we return now.

The problem encountered by reducing Eq. (3.78) to Eqs. (3.79) and (3.80) obviously must arise from
the fact that while exp�iy� � �cos y; i sin y� is a single valued function; the angle itself is
multivalued Ð we may add or subtract multiples of 2p without changing the physics of the problem.
In order to avoid complications due to this fact, it is convenient to work with the gradient of y�x�, which
is single valued:

v�x� � ry�x�: (3.103)

In the closely related problem of a super¯uid ®lm v�x� is proportional to the super¯uid velocity,
vs � ��h=m�v;m being the mass of the particles. Now the phase change of y along any closed contour CI

C

v�x� � dl � 2ps; s � 0;�1;�2; . . . : (3.104)

If s is positive (negative) we call the corresponding excitation of the spin ®eld a vortex (antivortex) of
`̀ charge'' s (Fig. 19a). In practice, only the cases s � �1 need to be considered, if the contour encloses
a single vortex or antivortex only. In the super¯uid case, these excitations correspond to singularities in
the ¯ow ®eld, due to a situation where the super¯ow is not strictly irrotational, r� vs�x� 6� 0, and Eq.
(3.104) corresponds to the net circulation in the super¯ow, quantized as �2p�h=m. In the super¯uid, it is
common to write the (complex) order parameter ®eld C�x� in terms of amplitude and phase,

C�x� � jC�x�j exp�iy�x��: (3.105)
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The singular centers of the vortices (antivortices) are points where the amplitude vanishes, C�x� � 0. It
is then convenient to allow for the situation where one has many vortices and antivortices in the system,
and de®ne a vortex charge density by

n�x� �
X
l

sld�xÿ xl�; (3.106)

where sl is the charge of the vortex (or antivortex) centered at point xl. Eqs. (3.104) and (3.106) also
imply, ẑ being a unit vector in z-direction perpendicular to the surface,

r� v�x� � 2pn�x�̂z: (3.107)

We now wish to study the effect of an assembly of vortices on the statistical mechanics. Following
Kosterlitz and Thouless [37], we decompose v�x� into two parts,

v�x� � r~y�x� � 2p�̂z�r�
Z

dx0n�x0�G�x; x0�; (3.108)

Fig. 19. Schematic pictures of topological excitations: (a) vortex in the plane rotator model on the square lattice (note that

the corresponding antivortex is simply found by inverting the orientation of all the spins). (b) Dislocation on the square lattice,

indicating the construction that yields the Burgers vector. (c) Disclination embedded in a square lattice.
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where ~y�x� is the non-singular phase function, and the Green's function G�x; x0� satis®es

r2G�x; x0� � d�xÿ x0�: (3.109)

It is easily checked from Eqs. (3.108) and (3.109) that Eq. (3.108) satis®es Eq. (3.107). Combining now
Eq. (3.103) and Eq. (3.79) we see that the effective Hamiltonian can be broken into a piece due to
regular spin waves and another piece due to vortices,

H

kBT
� J

2kBT

Z
dx v2 � J

2kBT

Z
dx�r~y�2 �Hv

kBT
(3.110)

with

Hv

kBT
� 2p2J

kBT

Z
dx

Z
dx1

Z
dx2 n�x1�n�x2�rG�x; x1� � rG�x1x2�: (3.111)

Using the `̀ charge neutrality'' conditionZ
dx n�x� � 0 (3.112)

one can reduce Eq. (3.111) to a simpler form by integration by parts and using the explicit form of the
Green's function of the Laplacian in two dimensions,

G�x; x0� � 1

2p
ln�jxÿ x0j=a� � C; (3.113)

where C is a constant that will get the physical signi®cance of the vortex core energy Ec here. As a
result, one ®nds

Hv

kBT
� ÿJp

kBT

Z
jrÿ

Z
r0j>a

dx dx0n�x�n�x0� ln�jxÿ x0j=a� � Ec

kBT

Z
dxn2�x�: (3.114)

So in addition to the spin wave part of the partition function due to J=�2kBT� R dx�r~y�2, which has
been used in Eqs. (3.80),(3.81),(3.82) and (3.83) already, we have to consider the effects of the vortex
part, Eq. (3.114). Basically, this is a Coulomb gas problem in d � 2 dimensions (where the electrostatic
interaction is a logarithmic variation rather than 1=x as it would be in d � 3 dimensions).

We ®rst estimate the energy of a single vortex, using directly Eq. (3.79) and noting that for a vortex
con®guration jry�x�j � 1=r, where r is the radial distance from the center of the vortex. This yields,
assuming a total area pL2 encircling the vortex,

E1vortex � 1

2
J

Z
dx ry�x�� �2� pJ

Z L

a

r dr
1

r

� �2

� pJ ln�L=a�: (3.115)

Here we have neglected the case energy Ec.
Thus if the considered linear dimension L!1, the energy of a single vortex would diverge! But in

an area L2 there are �L=a�2 possibilities to put such a vortex, so the entropy is estimated as

S1vortex � 2kB ln�L=a�: (3.116)
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The free energy excess needed to create an isolated vortex F1vortex � E1vortex ÿ TS1vortex would hence
become negative if T exceeds a critical value

kBTc � pJ=2: (3.117)

Thus the picture of the Kosterlitz±Thouless transition [37] emerges as follows: for T < Tc, one has only
bound vortex±antivortex pairs, which have a ®nite excitation energy, depending on the separation r
between their cores as given by Eq. (3.114)

Evortexpair � 2Ec � 2pJ ln�r=a�: (3.118)

At low enough temperatures, only the smallest possible distance r � a contributes and then the density
of these tightly bound vortex±antivortex pairs is simply given by nvortexpair / exp�ÿ2 _Ec=kBT�. As the
temperature is raised towards Tc, not only the density of vortex pairs increases but also more and more
vortex pairs with larger separation r appear, until at Tc free vortices (i.e., r!1) can be generated by
statistical ¯uctuations. In the Coulomb gas interpretation, the Kosterlitz±Thouless transition [37] hence
gets the interpretation as a metal±insulator transition (free charges at T > Tc imply a conducting state,
while the phase for T < Tc containing only bound dipoles is insulating). As mentioned above, a
completely analogous treatment applies to the super¯uid±normal-¯uid transition in d � 2 dimensions
as well: instead of Eq. (3.79), one has the Hamiltonian

Hsuperfluid � 1

2
r�s �T�

Z
dxjvs�x�j2; (3.119)

where r�s �T� is the super¯uid density. Using the equivalence that vs � �hv=m, we can identify
�h2r�s �T�=m2 with J and then Eq. (3.117) gets replaced by

kBTsuperfluid
c � p

2
�h2r�s �T�=m2: (3.120)

Of course, the arguments presented in Eqs. (3.115),(3.116),(3.117),(3.118),(3.119),(3.120) and () are
plausibility arguments only, and can estimate the transition temperature only qualitatively but not
quantitatively Ð for a quantitative treatment the statistical mechanics of the full Hamiltonian, Eq.
(3.114) must be tackled, which requires renormalization group methods [261,262]. But the ®nal
answers for the transition temperature can be cast into a similar form as Eqs. (3.117) and (3.120) Ð
only the `̀ coupling constants'' (J or �h2r�s �T�=m2, respectively) get `̀ renormalized''. A spectacular
consequence of this modi®ed form of Eq. (3.120) is that the density of the super¯uid vanishes
discontinuously at Tc in d � 2 dimensions (since in the normal ¯uid we must have r�s �T > Tc� � 0),
and the magnitude of this jump in the super¯uid density is universal [244,262].

We now return to the melting of two-dimensional crystals and consider the defects corresponding to
the vortices of the plane rotator models: these are dislocations [263]. However, while in the continuum
version of the plane rotator model, the basic ®eld v�x� � vy�x� has a vector character, now the basic
displacement ®eld uij�x� is a second rank tensor. So the scalar charges of the vortices get now replaced
by a vector, the Burgers vector b characterizing a dislocation. We see this when we write down the
relation corresponding to Eq. (3.104);I

C

du � ab�x�; (3.121)

here we have de®ned the Burgers vector b�x� dimensionless and therefore the lattice spacing a is
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written explicitly. Fig. 19b illustrates the discrete version of this construction, Eq. (3.121) on the square
lattice. Note that a dislocation can be made by adding (or removing, respectively) extra half-rows of
atoms on an otherwise perfect lattice. The Burgers vector itself must then also be a vector of the
underlying lattice. Since dislocation pairs (with equal and opposite Burgers vectors) are known to
interact logarithmically in two dimensions [263], it is plausible that dislocation unbinding drives the
melting transitions of a two-dimensional solid [37].

Now continuum elasticity theory exhibits a second type of topological defects: disclinations [263]
(Fig. 19c). The energy cost of a disclination grows much faster with the area of the region taken by the
defect than the energy cost of a dislocation. However, these defects then play a basic role for the
transition from the hexatic phase to the fully disordered ¯uid.

The effective Hamiltonian for interacting dislocations in two dimensions can be found analogously to
the effective Hamiltonian for the interacting vortices discussed above. One decomposes the matrix of
displacement derivatives into a smooth part and a part due to dislocations:

@uj�x�
@xi

� @yj�x�
@xi

� @uj�x�
@xi

����
sing

; (3.122)

and the analog of Eq. (3.110) becomes

H �H0 �Hdislocations; (3.123)

with

Hdislocations

kBT
� ÿ 1

8p

X
x 6�x0

K1b�x� � b�x0� ln�jxÿ x0j=a� ÿ K2
�b�x� � �xÿ x0���b�x0� � �xÿ x0��

jxÿ x0j2
( )

� Ec

kBT

X
x

jb�x�j2: (3.124)

Here the coupling constants K1 and K2 are equal in the case of a smooth substrate and are given by

K1 � K2 � �4a2=kBT�m�m� l�=�2m� l�; (3.125)

the {b�x�} are dimensionless Burger's vectors of the form

b�x� � m�x�e1 � n�x�e2; (3.126)

where m�x� and n�x� are integers, and e1; e2 are unit vectors spanning the underlying (triangular)
lattice. Ec is the core energy of the dislocations, and again a renormalization group recursion relation
for the `̀ fugacity'' y � exp�ÿEc=kBT� has to be constructed. Although due to the vector character of
the Burgers vector (Eq. (3.126)) the Hamiltonian of this `̀ vector Coulomb gas'' (Eq. (3.124)) is more
complicated than the scalar one, Eq. (3.114), the treatment can be carried over in a very similar manner
[39,244]. One ®nds that the melting transition occurs via unbinding of dislocations, when the
dimensionless elastic constants �m � ma2=kBT; �l � la2=kBT� take a universal ratio [39,244]

lim
T!Tÿm

�mR�T� �mR�T� � �lR�T�
� �

2�mR�T� � �lR�T�
� 4p: (3.127)

Here the index R indicates that the (®nal) `̀ renormalized'' values of the elastic constants m; l must be
used in the harmonic part H0 (Eq. (3.123)), which is of the form of Eq. (3.85), which are taken at the
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start of the renormalization group recursion. The theory also predicts cusp-like singularities of these
renormalized elastic constants just below the melting temperature Tm [244]

�mR�T� � �mR�Tm� 1� b�Tm ÿ T��n� �
; �n � 0:3696 . . . : (3.128)

The same exponent �n also enters the critical behavior of the correlation length x��T�, which describes
the average distance between free dislocations for T > Tm,

x��T� / exp b=�T ÿ Tm��n
� �

; T ! T�m : (3.129)

At this point we emphasize that the exponent �n in Eqs. (3.127) and (3.128) differs from the analogous
result for the plane rotator model, for which �n � 1=2 [37]. The correlation length x��T� has also a
direct physical signi®cance since it controls the growth of the pseudo-Bragg-singularities that develop
at q � G as T ! T�m ,

S�q � G� / x2ÿZG� ; (3.129)

where ZG is still given by Eq. (3.90) if one uses the renormalized elastic constants �mR�Tm�; �lR�Tm�
rather than the corresponding `̀ bare'' ones.

Above Tm there occurs still a nontrivial behavior of the orientational correlations. They can be treated
by another effective Hamiltonian [39,244] with a nontrivial coupling constant KA�T�,

Hefff0g � 1

2
KA�T�

Z
dx�ry�2: (3.131)

Noting the analogy with Eq. (3.79), we can immediately conclude that in the hexatic phase the
orientational correlation G6�x� (Eq. (3.95)) should exhibit a power-law decay, Eq. (3.100), with

Z6�T� � 18kBT=�pKA�T��: (3.132)

Now one can estimate that KA�T� � 2Eca2 suf®ciently above Tm, while near TmKA�T� is divergent,
KA�T� / x��T�� �2 [39,244]. This behavior results because free dislocations screen the interactions
between dislocation pairs, and so this interaction gets unscreened as T ! T�m . On the other hand, at a
temperature T � Ti, where Z6 � 1=4, the Kosterlitz±Thouless transition from the hexatic to the
isotropic liquid phase occurs. Thus the coupling constant KA�Ti� exhibits at Ti a universal jump,
analogous to the universal jump of the super¯uid density at the two-dimensional super¯uid to normal
¯uid transition.

We now discuss the question to what extent this behavior gets modi®ed when the effect of sub-
strate corrugation is taken into account. It is found [39,244] that the behavior of interacting dislocations
in the presence of a periodic substrate potential is still described by the vector Coulomb gas
Hamiltonian (Eq. (3.36)), but now the logarithmic coupling K1 and the angular coupling K2 are no
longer equal and

KR
1 �

4a2

kBT

m�m� l�
2m� l

� mg
m� g

� �
; KR

2 �
4a2

kBT

m�m� l�
2m� l

ÿ mg
m� g

� �
; (3.133)

where the orientational elastic constant g was speci®ed in Eq. (3.101). It turns out that the difference
between KR

2 and KR
1 has a marked in¯uence on the exponent �n controlling the exponential divergence of

the correlation length x��T� in Eq. (3.129) [248,249]: Depending on the ratio s � KR
2 �Tÿm �=KR

1 �Tÿm �;�n
decreases smoothly from �n � 2=5 when s � 0 to �n � 0:3696 when s � 1. The dislocation unbinding
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transition always occurs when the renormalized coupling constant KR
1 � 16p, as previously (Eq.

(3.127)).
Although the melting of incommensurate solids into ¯uids in the presence of the periodic substrate

potential hence is not very different from the smooth substrate case, a rather different behavior is found
above the melting temperature. We can again use a Hamiltonian as written in Eq. (3.131), but must
amend it by the orientational biasing potential ÿh cos�py�, as we did for the harmonic Hamiltonian
described from elasticity theory for the solid phase, Eq. (3.92). Thus

Heff�y� �
Z

dx
1

2
KA�T� ry�x�� �2ÿ h cos py�x�� �

� �
: (3.134)

For melting of triangular lattices on a hexagonal substrate �p � 6�, long range orientational order would
be present even above Tm because of this term. Thus all ¯uids on such substrates are trivial examples
for systems with hexatic order, and therefore the hexatic to liquid transition driven by disclination
unbinding will be smeared out, it is a sharp transition for the smooth substrate case only. However, due
to the Novaco±McTague effect [40] there are typically two symmetric degenerate orientational minima,
a few degrees off perfect alignment. In the equilibrium incommensurate phase, there will be a
symmetry breaking with respect to these two minima. This opens the possibility of an Ising-like
transition at a temperature above Tm, where this symmetry is then restored. But the orientational order
parameter h6siyi would still be nonzero even above this transition, however.

For melting of incommensurate triangular lattices on square substrates, an Ising transition is
predicted [39,244] above Tm even in the absence of any Novaco±McTague effects. The substrate then
presents a 12-fold symmetric potential, which acts like an Ising perturbation on exp 6iy�x�� �. Thus there
should be an Ising-like transition, above which j exp�6iy�h ij vanishes. In contrast, j exp�4iy�h ij is
nonzero for square substrates at all temperatures for square lattice substrates.

Finally we draw attention to the work by Ostlund and Halperin [264] who considered two-
dimensional melting on uniaxial substrates.

3.5. Multilayer adsorption, wetting and interfacial phenomena

Since several decades it is known experimentally that adsorption at surfaces is not restricted to
the formation of various monolayers, but rather a second layer can condense on the ®rst one, a third
on the second, etc., until ultimately thick `̀ wetting layers'' are formed. In this subsection, we shall
discuss these phenomena from a very simplistic point of view, assuming a lattice gas model with a
nearest neighbor attractive interaction. Thus, we disregard completely any effects due to a possible
mis®t between the lattice spacing of the substrate and the interatomic distances preferred by the
adsorbate species, and also do not pay any attention to the effect that order±disorder phenomena
possibly occurring in the ®rst layer at low coverage could have on the adsorption of further layers at
high coverage. Thus, the only transition that still is possible in the ®rst monolayer is a (®rst order)
transition from the lattice gas phase at low coverage to a `̀ lattice ¯uid'' phase (which for a square
substrate is nothing but the �1� 1� structure with some disorder due to residual empty lattice sites)
at a coverage closer to the monolayer saturation coverage. Considering the adsorption isotherm, i.e.
the coverage expressed as a function of the chemical potential of the adsorbate (cf. Section 2,
Eqs. (2.12)±(2.15)), this condensation shows up as a step singularity, and actually the condensation
of further layers show up as additional steps. Although this model is extremely crude, the resulting
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adsorption isotherms closely resemble corresponding experimental results for multilayer adsorption
(see Section 4).

In this subsection we only discuss the lattice gas model with an extremely short range binding
potential due to the substrate, assuming that only the ®rst layer adjacent to the wall is affected. In Ising
spin representation, the Hamiltonian is

H � ÿJ
X
hi;ji

interior layers

SiSj ÿ Js

X
hi;ji

surface layer

SiSj ÿ H
X

i

Si ÿ H1

X
i

surface layer

Si; Si � �1: (3.135)

Here J > 0 represents the attractive interaction between two adsorbate atoms which are nearest
neighbors on the lattice; if both adsorbate atoms are in the surface layer n � 1, we assume in general a
different interaction (Js) to allow for a substrate-mediated force. As is well documented, the `̀ magnetic
®eld'' H in spin language is related to the bulk chemical potential of the lattice gas, while the effect of
the (short range) binding potential to the substrate is contained in H1, the `̀ surface ®eld'' acting on
spins in layer n � 1 (see e.g. [5] or Section 2 of the present article).

The occurrence of multi-layer adsorption can already be deduced from Eq. (3.135) in the framework
of the molecular ®eld approximation [43,265]. If qjj is the coordination number in the lattice planes
parallel to the surfaces, molecular ®eld theory amounts to the following set of coupled equations for the
magnetizations mn � Sih ii2n of the nth layer:

mn � tanh
H

kBT
� qjjJ

kBT
mn � J

kBT
�mnÿ1 � mn�1�

� �
; n � 2; (3.136)

m1 � tanh
H

kBT
� H1

kBT
� qjjJS

kBT
m1 � J

kBT
m2

� �
: (3.137)

Solving these equations numerically one can show that the sequence of layering transitions ends in
critical points Tc�n�, with 43 limn!1 Tc�n� � Tc, the bulk critical temperature of the three-dimensional
Ising model. However, again the molecular ®eld equation fails qualitatively: actually the layering
transitions do not extend all the way up to the critical point, but rather they terminate near the
roughening transition temperature TR [43]. Fig. 20 shows schematically the expected phase diagrams:
only if a characteristic temperature of the system, the wetting transition temperature TW that we shall
discuss below, falls underneath the roughening transition temperature TR, layering transitions can be
observed (while the molecular ®eld theory implies TR � Tc and hence such a restriction does not exist).
Asymptotically one expects an approach of Tc�n� to TR according to a logarithmic law [266]:

TR ÿ Tc�n� / �ln n�ÿ2; n!1: (3.138)

We now brie¯y explain the physics of the interfacial roughening transition, which is a singularity of the
interfacial free energy fint (Fig. 17) describing the free energy excess due to an interface between
coexisting bulk low density and high density phases of the lattice gas. For T < TR, such an interface
(oriented normal to a lattice direction of the simple cubic lattice) is essentially ¯at, the mean square
interfacial width hw2i is ®nite, and the long wavelength capillary-wave type excitations (Fig. 16d) do
not occur, while they do occur for T > TR, leading to a divergent interfacial width (Eq. (3.63)). Here we
shall not go into any mathematical detail of the roughening transition, but rather we direct the reader to
suitable reviews [46,71,267]. We only mention that the roughening transition also belongs to the class
of Kosterlitz±Thouless [37]-type of phase transitions, which were discussed in the previous section.

A. Patrykiejew et al. / Surface Science Reports 37 (2000) 207±344 265



Thus one ®nds the analoguous exponential singularity of the correlation length xhh of height±height
correlations of the interface (and the step free energy s, cf. Fig. 17)

xhh�T� / sÿ1�T� / exp
const:

�TR ÿ T�1=2

" #
; T ! TÿR : (3.139)

For T > TR the presence of capillary waves with arbitrary large wave lengths l implies that x � 1, of
course (the height±height correlation function exhibits an algebraic rather than an exponential decay).

In order to understand the phase diagrams in Fig. 20 in more detail, we now turn to the wetting
transition. Again a full account of wetting phenomena would require an extensive review of its own,
and such reviews exist in the literature [45,268,269]; thus we restrict our treatment here to those salient
features which are most relevant in the context of the simulations described in Sections 4 and 5. It turns
out that wetting phenomena can also be understood in terms of a mean ®eld theory for the Ising model,

Fig. 20. Schematic phase diagrams of a semi-in®nite Ising magnet as a function of bulk ®eld H and temperature T. Three

possible `̀ scenarios'' are shown (which of them is realized depends on the ratios between the surface and bulk interactions

(Js=J) and on the surface ®eld H1=J); note that additional scenarios can be thought of and it is not yet clear under which

conditions these phase diagrams actually occur. In the language appropriate to adsorption problems, the upper phase diagram

refers to a `̀ strong substrate'', the surface being wetted by the adsorbate material at all temperatures. The middle and lower

phase diagrams correspond to `̀ intermediate substrate systems'', where the surface is only wet if T exceeds a certain

temperature Tw. If Tw exceeds the roughening temperature TR, one has just one ®rst-order prewetting line ending in a

prewetting critical point Tcs�H;H1� only if Tw < TR does one have an in®nite sequence of ®rst-order layering transitions

(labelled by the numbers n � 1; 2; 3; 4; . . . of the layers in the ®gure). These layering transitions end in layering critical points

Tc�n�, with limn!1Tc�n� � TR. Note that in the case of Tw > TR it is also possible that the wetting transition observed when T

increases towards Tw at H � 0 can also be second order (`̀ critical wetting'' ) rather than ®rst order: then a prewetting

transition line does not exist.
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but we have to work with a continuum rather than a lattice version. However, this continuum version is
readily derived from Eqs. (3.136) and (3.137), replacing differences by differentials [68,270,271]:

mn�1 � mn � a
@mn

@n

� �
� a2

2

@2mn

@n2

� �
� . . . ; (3.140)

where we again have denoted the lattice spacing by a. It is then convenient to rescale the order
parameter mn in the nth layer by the bulk order parameter mb in zero external ®eld. We denote this
rescaled order parameter mn=mb � m�z�; z being the distance �nÿ 1�a from the surface plane rescaled
by the correlation length xb in the bulk. Eqs. (3.136) and (3.137) then lead to the following differential
equation, when we also expand the tanh to third order [68,270,271]:

1

2

@2m
@z
� mÿ m3 � h � 0; (3.141)

where h is the rescaled version of the magnetic ®eld H, and a boundary condition [68,270,271]

g
@m
@z

����
z�0

�h� h1 � gm�z � 0� � 0: (3.142)

Here g � xb= a
�������������������
2�qjj � 2�p� �

; h1 is the rescaled surface ®eld, h1 � H1�xb=a�3 2�qjj � 2�� �3=2
=
���
3
p

and
the parameter g is related to the ratio JS=J as g � 1� 2x2

b�qjjJS=J ÿ qjj ÿ 1�=a2. Alternatively, Eqs.
(3.141) and (3.142) can be derived from a (rescaled) free energy functional describing a semi-in®nite
Ising-type system bounded by a surface at z � 0 as follows:

Ffm�z�g
kBTc

�
Z 1

0

dz
1

2

@m
@z

� �2

ÿm2 � 1

2
m4 ÿ mh

( )
ÿ h1

g
m1 ÿ

1

2

g

g
m2

1: (3.143)

Here the ®rst term is nothing but a rescaled version of the Ginzburg±Landau free energy functional
presented in Eq. (3.41), restricting spatial variations to the direction normal to the substrate surface
only, and the last two terms can be viewed as a phenomenological power series expansion of the (bare)
surface free energy in terms of the local order parameter m1 � m�z � 0� at the substrate surface.
Minimizing Eq. (3.143) with respect to m�z�, Eqs. (3.141) and (3.142) follow as Euler±Lagrange
equations of this variational problem.

The solution of Eqs. (3.141) and (3.142) leads to the surface phase diagram shown in Fig. 21. It is
seen that the Ising model in mean ®eld approximation leads to either second-order or ®rst-order wetting
transitions, depending on the choice of parameters h1 and g (or H1 and JS=J, respectively). Note that in
Fig. 21 the bulk ®eld H � 0 has been put to zero, so one considers phase coexistence between liquid
and gas in the bulk, and then wetting transitions can be observed by variation of the temperature T , the
strength of the surface ®eld H1 or the ratio Js=J. The phase diagram shown in the lowest part of Fig. 20
refers to one particular choice of H1 and Js=J, assuming that one is in a parameter region where then a
variation of T yields a ®rst order wetting transition at Tw. If Tw happens to be close enough to the
critical temperature Tc in the bulk, then the above continuum theory equations (3.141),(3.142) and
(3.143) make sense, and actually (in the framework of mean ®eld theory) the three `̀ control
parameters'' for the wetting transition (T ;H1 and Js=J) can be incorporated into two scaled parameters
only, namely h1 and g (Fig. (3.18)).
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In a real system, of course, the strength of interactions between adsorbates and between adsorbates
and the substrate is not a control parameter, but rather is ®xed, and so wetting transitions can be
observed varying T only. Therefore wetting transitions are dif®cult to observe in actual experiments,
and computer simulations (where H1 and Js=J are convenient control parameters, see Section 4) have a
de®nite advantage if one wishes to test the various theoretical concepts.

It is also instructive to consider the `̀ translation'' of the phase diagram of the considered lattice gas
model in the lower part of Fig. 20 from the intensive variables �T ;H� to the variables �T ;r� where r is
the density (Fig. 22. Such a choice of variables is very natural for a gas±liquid transition, of course. The
basic quantity characterizing a wetting transition then is the surface excess density rs, de®ned as

rs �
Z 1

0

r�z� ÿ r�1�� � dz; r�1� � rcoex
gas at coexistence: (3.144)

Fig. 21. Surface phase diagram of a nearest neighbor lattice gas model near its bulk critical temperature Tc in the mean ®eld

approximation. The coordinate axes are the rescaled surface ®eld h1=g (ordinate) and rescaled surface enhancement parameter

g=g (abscissa). Above the full curve the surface is wet, i.e. a ¯uid ®lm of macroscopic thickness has condensed at the substrate

surface for h � 0 while in the bulk of the system �z!1� one still has the gas phase. Below the full curve the substrate

surface is `̀ nonwet'' or `̀ partially wet'', i.e. a ®lm of ®nite thickness only has condensed. For g=g < ÿ2 the wetting transition

occurs along the straight line h1c � g and is second order, while for g=g > ÿ2 the wetting transition is ®rst order. Thus, the

special case gt=g � ÿ2; h1t � ÿgt is a tricritical wetting transition point. In the regime where the wetting transition is ®rst

order, mean ®eld theory predicts metastable wet and nonwet regions limited by the two `̀ surface spinodal'' lines h
�1�
1s and h

�2�
1s ,

respectively. For further explanation see the main text. From Schmid and Binder [68].
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For a nonwet surface, we have rs ®nite while in the wet case rs is in®nite. While for a second-order
wetting transition rs shows a critical divergence as T ! Tw from below, rs stays ®nite in this limit for a
®rst-order wetting transition, and exhibits at Tw then a jump singularity (rs jumps from a ®nite value to
in®nity).

In the lower part of Fig. 22, qualitative `̀ adsorption isotherms'' are shown when one traverses the
one-phase region increasing the gas pressure p up to its value at gas±liquid coexistence. While for
T < Tw; rs then increases up to a ®nite value at p � pcoex, for T > Tw one observes again a divergence
of rs as p! pcoex. This divergence is termed `̀ complete wetting''. For temperatures in the region
Tw < T < Tpre

c the adsorption isotherm shows one jump, where the ®lm thickness increases from a
small value to a somewhat larger value. This singularity is the prewetting transition. As T ! Tpre

c , the
magnitude of the jump smoothly vanishes (one expects that the phase transition for T � Tpre

c falls in the
universality class of the two-dimensional Ising model).

Of course, the description of wetting as given in Fig. 21 in terms of thin adsorbed ®lms vs.
macroscopically thick ®lms can be easily related to the standard description in terms of the contact
angle of droplets [272]. One considers the formation of ¯uid droplets of spherical cap-like shape sitting

Fig. 22. Phase diagram of a semi-in®nite ¯uid bounded by a wall in the plane of variable temperature T and density r. The

gas±liquid coexistence curve separates bulk gas (left) from bulk liquid (right) and ends in a bulk critical point �Tcb�. For

T > Tcb, in the one phase region, no wetting phenomena can occur. The wetting transition (at temperature Tw) is encountered

if one moves at gas±liquid coexistence along the gas branch of the coexistence curve. The left upper part of the ®gure

compares schematically the density pro®les that one ®nds then in the wet and nonwet states of the surface, respectively (z is

the direction normal to the attractive wall which is located at z � 0, the shaded area indicates the de®nition of the surface

excess density rs). In the lower part of the ®gure, the variation of the surface excess density with gas pressure in the one phase

region of the gas is shown, for temperatures exceeding the prewetting critical temperature Tpre
c (left part), in between Tw and

Tpre
c (middle part) and for T < Tw (lower part).
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on the wall and thin ¯uid layers spread out over the whole substrate surface as competing possibilities
and asks which case yields the lower free energy. Three interfacial free energies play a role Ð the gas±
liquid interfacial tension fint, as well as the surface free energy density f ls of the liquid in contact with
the wall, and of gas in contact with the wall (f g

s ). The balance of forces on the contactline of a stable
(`̀ sessile'' ) drop at the wall with contact angle y yields [272]

fint cos y � f g
s ÿ f ls : (3.145)

Of course, this equation has a solution only for y as long as f gas
s < f ls � fint: a surface that satis®es this

condition is nonwet. In contrast, if f gas
s > f ls � fint, it is energetically more favorable for the droplet to

completely spread out, and form a (thick) ®lm of liquid phase, so there is no longer any direct contact
between the gas and the wall because of the intruding liquid layer. As a result, in this wet region of the
surface the actual surface energy of the gas is no longer given by the continuation of the branch f g

s from
the nonwet region, but rather by f g�

s � f ls � fint.
We now consider the description of wetting phenomena in terms of the effective interface

Hamiltonian [45,269]. This concept is inspired by the interpretation of a wetting transition as an
interface unbinding transition, and the intrinsic pro®le of the interface is disregarded, only the local
distance l�q� of the interface from the wall at lateral distance q � �x; y� from the origin is considered
(see Fig. 16d). Then the effective Hamiltonian becomes, in the spirit of Eq. (3.58)

Hint
eff l�q�f g �

Z
dq

1

2
fint�rl�2 � S l�q�f g

� �
; (3.146)

where S�l� is the effective interface potential due to the wall. Assuming short range forces and a
second order wetting transition, S�l� can be written as

S�l� � 2Hmblÿ At exp�ÿl=xb� � B exp�ÿ2l=xb�; (3.147)

where A; B are positive constants and t is the normalized distance from the wetting transition (e.g.
t � 1ÿ T=Tw if one considers the temperature as the control parameter). If one disregards the capillary
wave ¯uctuations described by the (rl)H2 term in Eq. (3.146) (compare Eqs. (3.58)±(3.63)), the
equilibrium average distance l of the interface from the wall is found by minimizing the effective
surface free energy density S�l� with respect to l. This yields

2Hmbxb � 2B exp�ÿ2l=xb� ÿ At exp�ÿl=xb�: (3.148)

Studying the nonwet side of the transition, where t > 0, we ®nd for H � 0 a logarithmic growth of the
thickness l of the wetting layer:

l � ÿxb ln�At=2B�: (3.149)

For t < 0 and H � 0 the minimum would occur for l!1, the interface is not bound to the wall, the
wall is `̀ wet''. Then it is of interest to consider the approach to this wet state of the surface as H � 0
(`̀ complete wetting'' ), which again yields a logarithmic law:

l � ÿxb ln H � const:; H ! 0: (3.150)

This simple treatment can be generalized to long range wall potentials (then the exponentials in Eq.
(3.147) have to be replaced by the appropriate power laws [45]), to ®rst order wetting transitions (then
S�l� must lead to a minimum at lw

min < 0 for which S�lw
min� � 0 at H � 0 so a jump from lw

min <1 to
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l!1 occurs at the transition, etc.). We shall not describe all these extensions here but rather refer the
reader to the literature [45,268,269]. We emphasize, however, that for critical wetting with short range
forces the simple mean ®eld theory based on Eqs. (3.147) and (3.148) is not expected to be accurate,
and capillary wave ¯uctuations need to be taken into account. However, it is still unclear whether the
resulting theory based on a renormalization group treatment of Eq. (3.146) [273,274] can account for
the actual behavior of the corresponding more microscopic model, Eq. (3.135) [175,275]. We do not
describe the corresponding work, since real systems need to take into account long range forces
between the substrate surface and the adsorbate [45,269] and then a mean ®eld theory similar to Eqs.
(3.147),(3.148),(3.149) and (3.150) is believed to work better.

As a ®nal point of this subsection we mention that it is also interesting to consider wetting
phenomena in semi-in®nite two-dimensional lattice gas models bounded by a one-dimensional wall.
This problem may be relevant for the adsorption of monolayers on stepped surfaces [276]. The change
of the binding potential near the boundary of a terrace may give rise to preferential adsorption along
this boundary. In this case, interfacial ¯uctuations near the wetting transition are far more relevant, cf.
Eqs. (3.57),(3.58),(3.59),(3.60),(3.61) and (3.62) and Fig. 16. Using for this problem again the nearest
neighbor Ising model, i.e. Eq. (3.135) but in one dimension less, a critical wetting transition can be
found exactly [277] at

exp�2J=kBT�f cosh�2J=kBT� ÿ cosh�2H1c=kBT�g � sinh�2J=kBT�; (3.151)

and in this case Eq. (3.150) is replaced by a power law, l / Hÿ1=3 as H ! 0 [278,279].

4. Lattice gas models

Basic information about the lattice gas model description of adsorbed layers has been already
presented in Sections 2.2.2 and 3.1. Wide popularity of that approach results from its ¯exibility and
simplicity. By changing the parameters representing various interactions in the system one can
determine how they in¯uence the structure and stability of various ordered states (Section 3.1). In
general, exact solutions of lattice gas models are seldom available [277,280] and various
approximations must be used. Apart from the mean ®eld type theories that can provide only crude
and often qualitatively incorrect results [5,46], the transfer matrix method [281±285], the
renormalization group method [41,285,286] and the coherent anomaly method introduced by Masuo
Suzuki [173,287,288] have been applied to obtain solutions of various lattice gas models. Particularly
interesting and abundant results have been obtained with the help of computer simulation methods,
however [5,33,127±129,174,289±292].

In this section we concentrate the discussion on those applications of lattice gas models that have
been directed towards understanding various adsorption phenomena on square and rectangular lattices.

4.1. Monolayers

The interaction between the particles adsorbed on a lattice can be represented by the potential u�r�,
where r assumes discrete values:

r �
����������������������
k2a2

1 � l2a2
2

q
: (4.1)
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In the above, a1 and a2 are the lengths of the unit cell vectors and k and l are integers. In principle, all
the properties of such lattice gas systems can be derived from the grand canonical potential, Eq. (2.11).
The possible ordered structures that can appear in the system are primarily determined by the lattice
symmetry and the properties of the potential u�r�. Usually, u�r� is a sum of contributions arising from
repulsive and attractive interactions. For example, assuming that u�r� is given by the Lennard-Jones
potential, the effect of repulsive forces can be related to the relative size of adatoms, measured by the
parameter s and the size of the surface unit cell, measured by the lattice constants a1 and a2. It is
convenient to introduce the reduced quantities and express all the distances in units of, say, a1. Note
that in the case of a square lattice, e.g. (100) plane of the f.c.c. crystal, a2 � a1, while for the (110)
plane of the f.c.c. crystal a2 �

���
2
p

a1. Also, the energy-like quantities, as well as the temperature, can be
expressed in units of e.

In the ground state �T � 0� the ordered structures can be usually readily determined. Any ordered
superstructure, labelled by the lower index m, is characterized by the unit vectors em;1 and em;2 (Fig. 23)
such that

em;i � mi;1a1 � mi;2a2; (4.2)

where mi;1 and mi;2 are integers. Each ordered state m is characterized by its density rm and the energy
E�m � Em=e (per lattice site) given by

rm �
1

M

X
i

ni; (4.3)

Fig. 23. Examples of different ordered superstructures on a square lattice. The adsorbate layer unit lattice cell vectors are

shown for the structure 9.
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where M is the total number of lattice sites in the system and

E�m �
1

2

X
k

u��rk�pj: (4.4)

In the last equation the distance rj is measured from any chosen occupied site to the jth shell of the
occupied neighbor sites and pj is the number of particles in the jth shell of neighboring sites. Thus, the
grand canonical potential (per lattice site) of any ordered structure m is equal to

g�m�m�� � rmE�m ÿ rmm
�: (4.5)

The transition point between two different superstructures m and n occurs at the chemical potential
equal to

m�tr�m; n� �
rnE�n ÿ rmE�m

rn ÿ rm

: (4.6)

In the above, the density of the ®nal state n is assumed to be higher than the density of the initial state
m. One also has to take into account the dilute gas phase g, which at the ground state has the density
rg � 0 and the energy E�g � 0.

The results of systematic study of the ground state properties of systems characterized by different
symmetry of the surface lattice and different size of the adsorbed particles have been presented by
Kaburagi [293] and by Borowski et al. [294]. An example of the results obtained for a square lattice is
presented in Fig. 24. From the ground state calculations it follows that in the case of a square lattice, the
systems with s� � s=a � 1:0033 exhibit only two different phases: the dilute gas phase and a simple
�1� 1� ordered phase of density r � 1. As soon as s� becomes larger than 1.0033 the situation

Fig. 24. Ground state phase diagram for the Lennard-Jones lattice gas on a square lattice (from Ref. [294]). The numbers

mark the stability regions of different superstructures shown in Fig. 23.
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becomes a little more complex and the system exhibits additional c�2� 2� ordered phase of the density
r � 0:5. Due to the symmetry properties of the Hamiltonian, the phase diagram is symmetric around
the point r � 0:5. Examples of phase diagrams corresponding to the above mentioned two regimes and
determined by the Monte Carlo simulation are presented in Fig. 25. Note that the phase diagram shown
in Fig. 25b is qualitatively the same as the phase diagram for the Ising model with the ®rst nearest
neighbor repulsive and the second nearest neighbor attractive interaction (cf. Fig. 10).

The lattice gas model provides a simple explanation for the experimentally observed changes in the
critical temperature of adsorbed monolayers resulting from the changes of the dimensional
incompatibility between adsorbate and adsorbent (cf. Eq. (2.9)). Note that in the case of a lattice
gas model, a simple mean ®eld approximation gives

TMF
c � Usum

2k
; (4.7)

where

Usum � ÿ0:5
X

j

u�rj� (4.8)

and the sum runs over different shells of neighbors. In the particular case of the Lennard-Jones
interaction potential, truncated at 2:5s�;Usum is given by [296]

Usum � ÿ8e�C12s�12 ÿ C6s�6�; (4.9)

where C12 � 1:015997141 and C6 � 1:156625.
Thus, the critical temperature is proportional to Usum, which varies with s�. Of course, the same is

true for more rigorous treatments, as is illustrated in Figs. 26a and b. The only available experimental
data which clearly demonstrate changes of the two-dimensional critical temperature with dimensional

Fig. 25. Examples of phase diagrams for the two-dimensional square lattice gas model for Lennard-Jones particles of

s� � 1:0 (a) and 1.02 (b) obtained from Monte Carlo simulation [295].
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incompatibility correspond to adsorption on a honeycomb lattice of lamellar dihalides surface [138] (cf.
Fig. 26c). Nevertheless, the qualitative picture should be the same in the case of adsorption on a square
lattice. Of course, the predictions stemming from lattice gas models do not directly apply to adsorption
on rather weakly corrugated surfaces of lamellar dihalides and are, at most, only qualitatively correct.

Fig. 26. Two-dimensional critical temperature versus Usum for the Lennard-Jones particles of different diameter, s� � s=a,

(shown in the ®gure) on a square lattice, obtained from mean ®eld approximation (a) and from the coherent anomaly theory

(b); (c) shows the ratio of two-dimensional and three-dimensional (bulk) critical temperatures for simple gases adsorbed on

lamellar dihalides plotted versus the dimensional incompatibility parameter de®ned by Eq. (2.9) (from Ref. [296]).
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Lattice gas models work much better for strongly adsorbed (chemisorbed) species. Good examples of
such a system are the monolayers of atomic hydrogen adsorbed on Pd(100) [16] and on W(100) [297],
Cl adsorbed on Ag(100) [129] and O atoms adsorbed on Cu(100) [298]. It is particularly interesting that
even very simple lattice models allow to obtain a rather good agreement with experimental data. For
instance, hydrogen adsorbed on W(100) orders into c�2� 2� phase at low temperatures. The simplest
possible model which predicts that form of ordering is the Ising-like model with nearest-neighbor
repulsive interactions only. Monte Carlo simulation for such a model [289] led to rather good
agreement between the calculated and measured temperature changes of the intensity of a LEED spot
for the c�2� 2� phase.

A quite similar model was also found suitable to describe the dissociative adsorption of chlorine on
the Ag(100) surface. A monolayer ®lm of atomic Cl on Ag(100) was found to form the c�2� 2� phase
[298,299]. Taylor et al. [129] performed Monte Carlo simulations for a model with in®nite nearest-
neighbor repulsion on a 72� 72 lattice and found a good agreement with experimental data. In
particular, the calculated structure factor versus coverage reproduces quite well the measured LEED
beam height (see Fig. 27). A rather convincing proof for the adequacy of the Ising model representation
for that system is the `̀ Fisher renormalized'' exponent b=�1ÿ a� � 0:12 evaluated from experimental
data and which agrees very well with the exact Ising value of 0.125 (cf. Section 3.2).

A similar system of H atoms adsorbed on Pd(100) surface, which was also found to exhibit the
c�2� 2� ordered structure, required a much more complicated model, however. LEED diffraction
intensities measured as a function of temperature at different surface coverages [16] allowed to
determine the phase diagram shown in Fig. 28. One important difference between the phase behavior of
H/Pd(100) ®lm with respect to H/W(100) system is a lack of symmetry about y � 0:5. Therefore, a
lattice gas model with pairwise interactions only is evidently too simple to describe the phase diagram
for H/Pd(100) system. A Monte Carlo study of Binder and Landau [127] for a model with 1st and 2nd
nearest neighbor interactions supplemented by a three-body interaction term (cf. Section 2.2.1) allowed
to reproduce well the phase diagram but only at temperatures near the maximum transition temperature
(see Fig. 28). It was argued that the widening of the ordered phase regime resulted from the limited
resolution of LEED experiments. In Monte Carlo simulation one can mimic this limited resolution by
®nite system size. Calculations performed for �40� 40� lattice demonstrated that in this case the
widening of the regime of ordered phase at low temperatures does occur as is demonstrated by Fig. 29.
The phase diagram depicted in Fig. 29 was obtained for a simple model with the repulsive (attractive)
®rst (second) nearest neighbor interaction and neglected three-body term and hence exhibits full
symmetry with respect to the point y � 0:5 (cf. also Fig. 25). In general, addition of three-body
interactions destroys the invariance of the Hamiltonian with respect to the particle±vacancy exchange
(cf. Section 2.2.1).

Although the formation of the c�2� 2� ordered phase is quite common in atomic monolayers on
metals [299], there are also numerous examples of systems known which show other ordered phases.
For example, atomic oxygen adsorbed on Rh(100) was found to form the p�2� 2� structure of density
0.25 [111], which then undergoes a transition to a denser c�2� 2� structure. The same behavior was
found for O/Pd(100) [112] and Se/Ni(100) [130]. The phase diagram for the last system was evaluated
by re¯ection high-energy electron diffraction (RHEED) [130] and was also studied by Monte Carlo
simulation [130,300]. Analysis of experimental data, model calculations and symmetry arguments led
to the conclusion that the Se/Ni(100) phase diagram is topologically equivalent to the Ashkin±Teller
model [301]. In this model, each lattice site is characterized by two Ising spins, si and ti, and the
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Hamiltonian reads:

H � ÿJ
X
hi;ji
�sisj � titj� ÿ L

X
hi;ji

sitisjtj: (4.10)

Critical properties of that model are believed to be non-universal and dependent on the ratio L=J. A
Monte Carlo study was performed [130] for a simple lattice gas model with interactions up to fourth
nearest neighbors which yields the phase diagram belonging to the universality class of the Ashkin±
Teller model. This was obtained using the Hamiltonian given by Eq. (2.11) with u�r1nn� � 1,
u�r2nn� � 1176 K; u�r3nn� � 0 and u�r3nn � 0:1u�r2nn�. Fig. 30 shows that the experimental Se/Ni(100)
phase diagram and the phase diagram obtained for the above lattice gas (Ashkin±Teller-like) model are
quite similar, indeed.

The structures c�2� 2� and p�2� 2� observed in the adsorption systems mentioned above are
degenerate as the adsorbed species can occupy one of two or four sublattices, respectively. Thus,

Fig. 27. Coverage dependence of the �1=2; 1=2� LEED beam height at 300 K for the atomic Cl adsorbed on Ag(100) surface

(a) and the structure factor obtained from Monte Carlo simulation on the 72� 72 lattice (b). (Adapted from Ref. [129].)
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domains of, say c�2� 2� phase on different sublattices may appear and give rise to the formation of a
network of light and heavy walls (cf. Fig. 31). It was argued by Baraldi et al. [109] that the transition
between the c�2� 2� and the denser �1� 1� structures in O/Rh(100) ®lm is governed by the formation
of heavy wall-like defects. The presence of the domain-wall structure for the p�2� 2� phase was
clearly seen at the con®gurations obtained by Monte Carlo method by Bartelt et al. [300].

Such degenerate structures may in certain circumstances exhibit commensurate±incommensurate
transitions. This transition has been found for the models with anisotropic interactions, such as the
ANNNI model [33,170] (see Section 3.4) and the lattice gas model of Lennard-Jones particles on a
rectangular lattice [292]. In the latter case anisotropy of interactions in x and y directions follows
naturally from the differences in the distances between neighboring particles located along those two
axes. Lennard-Jones particles on model rectangular lattices with the ratio of lattice constants
g � ja2j=ja1j � 1:1 and 1:2 and for particles characterized by different size s� � s=a1 were studied by
mean ®eld theory and Monte Carlo simulation method by Patrykiejew et al. [292]. For suf®ciently
small s� the only stable ordered structure is a simple �1� 1� phase independent of the magnitude of the
ratio g and such systems correspond to the ordinary Ising ferromagnet. The increase of s� introduces a
larger difference between the interaction energies in x and y directions which induces the formation of
other ordered states of lower density such as the �2� 1� and c�2� 2� structures. In particular, one may
obtain the situation where the nearest neighbor interaction along one, say the x, axis becomes repulsive
while the interaction along the other (y) axis is still attractive.

From the ground state calculations it follows that the stability regions of �2� 1� and c�2� 2�
structures are determined by the difference in their energies (per site)

Du � u�2�1� ÿ uc�2�2�: (4.11)

For example in the Lennard-Jones particles adsorbed on a lattice with g � 1:1 it was found [292] that
the system with s� � 1:02 should order into a simple �1� 1� phase, the system with s� � 1:03 into the

Fig. 28. (a) (left) Experimental phase diagram for H/Pd(100) Ð crosses, which denote the points T1=2 where LEED

intensities have dropped to one-half of their low-temperature values [16]. Dashed line is a theoretical phase diagram [127]. (b)

(right) LEED intensities plotted versus temperature at various coverages (shown in the ®gure) (adapted from Ref. [16]).
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�2� 1� structure while the system with a slightly larger value s� � 1:05 should already form the
c�2� 2� phase. Monte Carlo simulations con®rmed that prediction very well. Fig. 32 shows snap-shots
of con®gurations for the systems with s� � 1:03 and 1.05 which clearly demonstrate the formation of
�2� 1� and c�2� 2� structures. One should note, however, that in the system with s� � 1:05 small
domains of �2� 1) structure are also present. Despite the apparent difference in the structure of the
ordered phases, the phase diagrams for those two systems are very similar and in both cases look like
that shown in Fig. 33. Also the critical point occurs at practically the same temperature of
T� � kT=E � 0:235.1 Finite size scaling analysis of Monte Carlo data showed that both systems belong
to the universality class of the two-dimensional Ising model (see Section 3.2).

Fig. 29. (a) (top) Phase diagram for a simple lattice gas model with the ®rst nearest neighbor repulsive and the second

nearest neighbor attractive interactions �R � u�rnnn�=u�rnn� � ÿ1� derived from the points at which the squared order

parameter for the c�2� 2� phase (shown in part (b) (bottom)) drops to 50% of its low temperature value (dots and full line) in

comparison with the correct phase diagram (broken curves). (From Ref. [127].)

1 The total energy of attractive adsorbate±adsorbate interaction (per particle) is in both cases very similar and equal to about

ÿ1:39 (for s� � 1:03) and ÿ1:32 (for s� � 1:05).
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As it was already mentioned (Section 3.3), the appearance of �p� 1� order with p � 3 often induces
the commensurate±incommensurate phase transition, which was particularly well demonstrated in
numerous Monte Carlo studies of ANNNI model [170] (cf. Section 3.3), and was also observed in the
lattice gas model of Lennard-Jones particles [292].

A lattice gas version of the ANNNI model with J2=J1 � 0:3 and J0=J1 � ÿ1:0 was applied to
evaluate the phase diagram for the O/Pd(110) adsorption system [302,303]. This system exhibits two
different commensurate phases; �3� 1� at the coverage around 1=3 and �2� 1� at higher coverages
around 1=2, with an intervening incommensurate structure between those two ordered states. The
symmetry properties of the Hamiltonian for the lattice gas model with only pair interactions, which is
invariant under the transformation si ! ÿsi, give rise to the formation of another commensurate phase
at the coverage around 2=3, which is the same as the �3� 1� phase but with inverted vacancy±particle
occupations.

It has been already shown that the frequently observed asymmetry of phase diagrams for
experimental systems can be taken into account by adding three-body interactions to the lattice gas
models. Another possibility to explain this asymmetry is to go beyond the lattice gas model and allow
the adsorbed particles to displace from lattice sites [116]. Such off-lattice models will be a subject of
Section 5.

Fig. 30. A comparison of experimental phase diagram for selenium on Ni(100) surface (a) and the theoretical phase diagram

for the Ashkin±Teller-like model (b) (adapted from Ref. [130]).
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4.2. Multilayer adsorption

Extension of the lattice gas formalism from two-to three-dimensional adsorption systems is
straightforward [43,174]. Assuming that the adsorbate±substrate interaction is represented by the
potential v�z�, where z is the distance from the surface, the Hamiltonian for such a model is obtained by
replacing the constant term V0 in Eq. (2.10) by v�z�, which gives

H �
X

i

v�zi�ni � 1

2

X
i6�j

u�rij�ninj: (4.12)

Note that in the lattice gas language, zi can take up only discrete values determined by the distance of
the ith site from the surface, given by the number of layers l. Depending on the properties of the
potentials v�z� and u�r� the system shows different behavior [43,175,176,178,304±307].

Systematic analysis of the lattice gas model representation of multilayer adsorption was done by
Pandit et al. [43] for the potential v�z� given by

v�l� � V0dl1 � Blÿ3; (4.13)

where V0 is the energy of adsorption for the ®rst adsorbed layer.

Fig. 31. Schematic representation of the formation of light and heavy walls between the domains of the c�2� 2� phase

formed on different sublattices.
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Note that the above form of the adsorbate±substrate potential follows naturally from the assumption
that the interaction between an adsorbate atom and a single atom of the substrate is represented by the
(12,6) Lennard-Jones potential. In the case of a continuous space model, the interaction of an adsorbate
atom with the entire substrate of uniform density gives [21] the potential in the form

v�z� � Crz
ÿ9 ÿ Cazÿ3; (4.14)

where Cr and Ca (both being positive constants) determine the strength of repulsive and attractive

Fig. 32. Snap-shots of con®gurations for the system with g � 1:1 and s� � 1:03 at T� � 0:20 and the chemical potential

m� � m=e � ÿ1:0�y � 0:5001� (a) and s� � 1:05 at T� � 0:20 and m� � ÿ0:80�y � 0:492� (b). (From Ref. [292].)
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interactions, respectively. In the lattice gas model language, one can drop the ®rst (repulsive) term
assuming that it is already taken into account by the assumption that the adsorbate particles occupy
only the lattice sites above the surface.

A very elegant and detailed discussion of possible scenarios for the ®lm growth was given by Pandit
et al. [43], on the basis of a mean ®eld theory for the lattice gas model, and more recently this problem
was also considered by Prasad and Weichman [308], who used both the mean ®eld theory and the
renormalization group arguments.

Here we brie¯y discuss the main predictions stemming from the lattice gas model assuming that
B � V0 in Eq. (4.13) and neglecting all but the ®rst nearest neighbor interactions between adsorbate
atoms.

When the ratio V0=u is suf®ciently high, i.e., when the surface is highly attractive towards the
adsorbate, the ®lm grows in a layer-by-layer mode (see Fig. 34) which was observed in many real
adsorption systems [3,51,108,138]. At low temperatures it corresponds to the presence of a series of
layering transitions which terminate at the corresponding critical points Tc�l� Section 3.5.

As the adsorbate±substrate interaction becomes weaker and the following condition is met

V0

u
<

X1
l�1

lÿ3

" #ÿ1

(4.15)

the adsorbate does not wet the surface at T � 0, but may still exhibit complete wetting at the
temperatures which exceed the wetting temperature Tw. Thus, below Tw the ®lm thickness remains
®nite up to the bulk condensation point, while for T > Tw we observe again the formation of
macroscopically thick adsorbed ®lm as the chemical potential approaches its bulk coexistence value.
That change of the ®lm behavior at Tw marks the so-called wetting transition which can be either the
®rst-order or the continuous transition (critical wetting) depending on the value of V0=u and on the

Fig. 33. Phase diagram for the Lennard-Jones lattice system for g � 1:1 and s� � 1:03 (from Ref. [292]).
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range of molecular interactions in the system [309]. When the wetting transition is ®rst-order it is often
preceded by the prewetting transition between the thin and thick ®lms. The prewetting transition occurs
at the chemical potential below the bulk coexistence value. As the temperature increases the prewetting
transition terminates at the corresponding critical point. Due to the ®nite extent of thin and thick ®lms,
on both sides of the prewetting transition, it belongs to the universality class of the two-dimensional
Ising model. This situation corresponds to the so-called intermediate substrate regime.

A tutorial discussion of the theoretical aspects of wetting phenomena was already given in Section
3.5, where it was also pointed out that all these phenomena can be modeled on a qualitative level by the
Ising (lattice gas) model with nearest neighbor exchange J > 0 (i.e., attractive interaction in the lattice
gas), if we add at the substrate surface a surface ®eld H1 (which models a short range attractive surface
potential) that competes with the bulk ®eld H (which is related to the gas pressure in the system: H � 0
means that one has gas±liquid coexistence in the bulk, see Section 3.5).

In Fig. 35a we present the section of the phase diagram for this model in the H � 0 plane, choosing
the normalized inverse temperature J=kTc as abscissa and the normalized enhancement of interaction
Js=J as ordinate variable, delimiting the regimes where different type of phase transitions at the
substrate surface occur: to the right of the dashed vertical line (i.e., for temperatures T < TR, the
roughening transition temperature) layering transitions occur. The full curve is a projection of the line
of tricritical wetting transitions into the shown plane: above this line the wetting transition (where one
crosses a critical line H1 � H1c�T� either by varying H1 or by varying T at H � 0) is of ®rst order,
below the line the wetting transition is of second order. This tricritical line ends at the bulk critical
temperature of the lattice gas in the so-called `̀ special transition'' point [175,275].

In the regime where ®rst-order wetting occurs for H � 0, one expects to see prewetting phenomena
for H 6� 0, and evidence for this prewetting transition is shown in Fig. 35b. Fig. 36a shows that the

Fig. 34. An example of experimental adsorption isotherm for Ar on MgO at T � 60:8 K (adapted from Ref. [108]) (a) and

isotherms obtained from Monte Carlo study (b) for a cubic lattice gas model (from Ref. [176]).
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model yields evidence predicted for the logarithmic growth of the thickness of the adsorbed layer
(measured through the surface excess order parameter ms �

P
n�mn ÿ mb�;mn being the local order

parameter in the nth layer away from the surface, mb is the bulk order parameter). Both when one

Fig. 35. (a) Phase diagram of the semi-in®nite nearest-neighbor Ising model with exchange interaction Js in the surface plane

different from the bulk �J�, showing different regimes of surface phase transitions as function of Js=J and inverse temperature

J=kT . The full curve is obtained from Monte Carlo simulations (from Ref. [275]). (b) Plot of the order parameter m1 (layer

magnetization of the ®rst layer adjacent to the substrate, where the ®eld H1 acts) versus bulk ®eld H, for the model of (a), and

the choice of parameters Js=J � 1:3; J=kT � 0:25 and three choices of H1=J as indicated in the plot. The jump in the curve m1

vs. H, for H1=J � ÿ0:3 is a ®rst-order prewetting transition (from Ref. [175]).
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Fig. 36. (a) Semilog plot of the surface excess order parameter ms vs. �H1 ÿ H1c�=J (A) at H � 0, for the model of Fig. 35(a)

and the choice of parameters Js=J � 1; J=kT � 0:3 using H1c=J � 0:89. Case (B) shows ms plotted vs. H=J at H1 � H1c for

the same choice of parameters. Several choices of L (system geometry L� L� D with D � 40) are shown (from Ref. [175]).

(b) Surface excess order parameter ms plotted vs. surface ®eld H1=J for Js=J � 1:0; J=kT � 0:44 and H � 0, for a system with

L � 128;D � 40. The state with all layers up (i.e., mn near mn � �1 for all layer numbers n) is that lattice gas phase where no

condensation of any layer has as yet taken place, the state where m1 is near m1 � ÿ1 (and hence 2ms � ÿ4) means that the

®rst layer has condensed at the substrate, etc. Note the strong hysteresis between the states where two or three layers have

condensed (from Ref. [275]).
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approaches the wetting transition for H � 0 varying H1 and when one varies H for H1 � H1c�T�, a
logarithmic variation is seen as predicted (Section 3.5).

We emphasize that these smooth logarithmic variations occur for T > TR only, while for T < TR the
curve ms vs. H shows an in®nite sequence of steps as H ! 0 (multilayer adsorption), and also varying
H1 at H � 0 a number of steps in the curve ms vs. H1 is encountered Fig. 36b. The latter behavior is not
theoretically well understood yet.

The wetting transition temperature grows as the ratio V0=u becomes lower. When it reaches a certain
limiting value, the wetting temperature reaches the bulk critical point of the adsorbate, and for still
lower V0=u one enters the so-called weak substrate regime. In this case the adsorbate does not wet the
substrate under any conditions and adsorption is always ®nite.

Here we concentrate the discussion on a speci®c problem of layering transitions studied in
the framework of lattice gas models of adsorption on a square lattice. More general discussion
of multilayer adsorption and wetting phenomena can be found in specialized review articles
[45,268,310].

Within the strong substrate regime the properties of adsorption systems appear to be very sensitive to
even small changes in the relative strength of adsorbate±adsorbate and adsorbate±substrate interactions.
Figs. 37 and 38 show examples of phase diagrams resulting from Monte Carlo study of a lattice gas
model with nearest neighbor adsorbate±adsorbate interaction but long range surface potential (given by
Eq. (4.13)) with B � V0) [176]. In the case of strong substrate potential the ®lm grows via a series of
simple layering transitions involving condensation in one layer each. For a weaker surface potential one
®nds, however, a different sequence of layering transitions in which the ®rst three layers condense
together at low temperatures. This system shows also an example of a surface triple point at which the
layering transitions of layers 1�2 and layer 3 coexist. Note that the critical point of the layering
transition for layers 1�2 is considerably higher than the corresponding critical points for higher layers.
This results from the enhanced effects of adsorbate±adsorbate interaction in the condensed two surface
layers as compared with a single layer. Of course, even for a transition involving simultaneous
condensation in several, but ®nite, number of layers the critical behavior corresponds to the universality
class of a two-dimensional model, as the correlation length in the direction perpendicular to the surface
stays ®nite.

A suf®cient decrease of substrate potential ®nally leads to the crossover from the strong to the
intermediate substrate regime. This crossover may be also induced by adding further neighbor
(attractive) interactions between adsorbate particles [178]. Fig. 39 shows a comparison of the phase
diagram obtained for a simple model with the ®rst nearest neighbor interaction with the phase diagrams
corresponding to the model with added interaction between the third nearest neighbors.

It is also of interest to consider the situation where the formation of a multilayer ®lm is accompanied
by the order±disorder transition in the adsorbed layer [306,311±314]. Ebner et al. [311] discussed a
simple model with the ®rst (second) nearest neighbor repulsive (attractive) interaction between the
adsorbate particles and with the surface potential of the form (4.13). Although such a model is a little
unrealistic with respect to the bulk ¯uid it shows many interesting surface properties which allow to
explain some experimental data for adsorption of simple gases on graphite [315]. In particular, the
assumption of repulsive ®rst nearest neighbor interaction was found to inhibit wetting for a suf®ciently
strong substrate potential. Note that in such a model the completely ®lled ®rst layer can exist only when
the surface ®eld is strong enough to overcome the effect of repulsive nearest neighbor interaction
between the adsorbed particles. Whenever this happens all the sites in the second layer are subject to
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Fig. 37. (a) Phase diagram in the coverage �y�±temperature (T� � kT=J where J is the exchange constant between nearest

neighbors) plane of a nearest neighbor lattice gas model on a simple cubic lattice with a free surface, and a potential (4.13)

with B � V0 � 2:5J. (b) The corresponding phase diagram in the grand-canonical ensemble �m0 � �mÿ m0�=J, where m0 is the

chemical potential at the bulk gas±liquid coexistence). Note that the adsorbate±substrate potential was cut off above the fourth

layer, so that the curve for the layering transitions in the ®fth and higher layers merge at the bulk coexistence curve (from Ref.

[176]).

288 A. Patrykiejew et al. / Surface Science Reports 37 (2000) 207±344



repulsive interaction and hence depopulate the second layer. This mechanism spreads to further layers
as well and may prevent the system from complete wetting.

The supression of multilayer ®lm formation due to ordering in the ®rst adsorbed layer was also
observed in a simple lattice model considered by Wagner and Binder [314]. Unlike in the above
discussed situation the interaction between particles in the bulk were assumed to be attractive and the
surface potential restricted to act only on the particles adsorbed on sites in the ®rst layer and given by

vi � w0 � 1
2

w1� cos�px� � cos�py�� � w2 cos�px� cos�py�: (4.16)

In the case of a square lattice with only one wavelength, twice the lattice spacing, x and y are integers
and the surface lattice can be considered as composed of four sublattices with vni acting on sites
belonging to each sublattice n equal to:

v1
i � w0 � w1 � w2; v2

i � w0 ÿ w2; v3
i � w0 ÿ w1 � w2; v4

i � w0 ÿ w2:

This model was studied via mean ®eld approximation and Monte Carlo simulation. It was found that
for suf®ciently high corrugation of the surface potential exceeding a certain critical value, the forma-
tion of the second as well as higher layers is suppressed at low temperatures. Fig. 40 presents the
phase diagram for the case with additional repulsive next nearest neighbor interaction in the ®rst

Fig. 38. The same as in Fig. 37 but for a weaker substrate potential with V0 � 0:93J (from Ref. [176]).

A. Patrykiejew et al. / Surface Science Reports 37 (2000) 207±344 289



adsorbed layer. Instead of the usual ®rst order layering transition at a particular chemical potential
mc�1� one observes two second order transitions at m1

c�1� and m2
c�1�. In the region between those values

the adlayer forms the �2� 1� ordered structure. Layering transitions in the second and higher layers all
merge at the temperature marked by Tw�2�, so that at T < Tw�2� only a monolayer ®lm exists prior to
the bulk adsorbate condensation.

The interplay between ordering in the ®rst adsorbed layer and multilayer formation was observed
experimentally [315±319], but such situations require different off-lattice models which will be the
subject of the next section.

Fig. 39. A comparison of the phase diagram for the lattice gas models with the ®rst nearest neighbor interaction (a, b) with

the phase diagrams for the model with added second neighbor attractive interactions (c±f). (c±f) Results for

R � u�rnnn�=u�rnn� � 0:05 and 0.08, respectively. Parts (a), (c) and (e) show the phase diagrams in the coverage �y� vs

temperature �T� � kT=u�rnn�] plane, while (b), (d) and (f) show the corresponding phase diagrams in the chemical potential

�m� � �mÿ m0�=u�rnn�� vs temperature plane, where m0 is the chemical potential value at the bulk gas±liquid coexistence.

Phase diagram in (a) and (b) was taken from ref. [176], while those shown in (c)±(f) from Ref. [178].
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5. Films on surfaces with ®nite corrugation

As it was already demonstrated in Section 2, atoms adsorbed on crystalline surfaces experience a
corrugated surface potential. In case of physisorption periodic variations of the gas±solid potential are
usually small as compared with the adsorption energy and often are also smaller than or comparable
with the thermal energy of the adsorbed atoms. In such situations the lattice gas models discussed in the
previous section do not describe well the properties of adsorbed layers. Off lattice movement as well as
out-of-plane excitations of adsorbed atoms give rise to many new phenomena that cannot be included
into the lattice gas formalism.

In this section we concentrate on the properties of ®lms formed by the Lennard-Jones particles on
surfaces with square and rectangular symmetry. Although the majority of the results reported here has
been obtained with the help of computer simulation methods we also discuss several results of
experimental studies as well as results stemming from analytical approaches.

Fig. 39. (Continued ).
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5.1. Adsorption on a noncorrugated substrate

To prepare a ground for a full appreciation of the surface corrugation effects on the behavior of ®lms
adsorbed on crystalline surfaces, we now brie¯y discuss the properties of ®lms formed on a `̀ ¯at''
noncorrugated surface. When the surface potential possesses a deep minimum at a certain preferred
distance from the surface, z0, the adsorbed ®lm is essentially two-dimensional at low temperatures.
Deviations from planarity of the adsorbed layer may be due to temperature rise [203,320] and also may
result from the formation of the second and higher layers [63].

The behavior of strictly two-dimensional Lennard-Jones systems has been intensively studied by
various theoretical approaches [201,321±325] as well as by computer simulations [32,321,326±336]. In
general, the phase diagram is quite well known. It has been found that it exhibits two-dimensional
counterparts of all familiar states of matter in three-dimensional space: gas, liquid and solid (see

Fig. 40. Phase diagram of an adsorbed ®lm in the simple cubic lattice from mean ®eld calculations (full curves: ®rst order

transitions, broken curves: second order transitions) and from Monte Carlo simulation (dash-dotted curve: only the transition

in the ®rst layer is shown). Phases shown are the lattice gas (G), the ordered �2� 1� phase in the ®rst layer, lattice ¯uid in the

®rst layer F(1) and in the bulk F�1�. For the sake of clarity, layering transitions in layers beyond the second layer (which

nearly coincide with the layering of the second layer and merge at Tw�2�, are not shown. m0 is the chemical potential at the

bulk gas±liquid coexistence, and TMF
cb is the mean-®eld bulk critical temperature. While the layering transition of the second

layer ends at the critical point Tc�2�, mean ®eld theory predicts two tricritical points Tl
t �1� and Th

t �1� in the ®rst layer (from

Ref. [314]).
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Fig. 41). The triple point temperature has been estimated quite accurately as equal to
T�t � kT=e � 0:40� 0:015 [321,330]. Existing estimations of the critical temperature [321,335] for
that system are much less conclusive. From the theoretical calculations based on perturbation theory
Barker et al. [321] have obtained T�c � 0:56, while Monte Carlo simulations performed by the same
authors gave a lower value equal to about 0.533. A more recent Monte Carlo study due to Rovere et al.
[335] has given a still lower value of 0:50� 0:02. Those rather large differences in the critical
temperature estimations by different authors are not surprising. Computer simulations are dif®cult to
interpret in the close vicinity of second-order phase transitions and suffer from considerably hindered
speed of convergence, due to large effects of statistical ¯uctuation (critical slowing-down) as well as
from the ®nite size effects which are particularly troublesome near the critical temperature [337].
Recent Monte Carlo studies in the Gibbs ensemble [338,339] have clearly demonstrated that the way
one cuts off the interaction potential has also a big in¯uence on the estimated critical temperature.

Another controversy about the properties of strictly two-dimensional Lennard-Jones system concerns
the mechanism of melting. Already in the 1930s Peierls [259,260,340] argued that truly long-ranged
positional order cannot exist in two-dimensional systems, so that two-dimensional crystalline order is
impossible. This has been proved later by Mermin and Wagner [57]. In 1973 Kosterlitz and Thouless
[37] proposed a theory of dislocation-mediated melting for a two-dimensional system. That theory has
been later developed further by Halperin and Nelson [38,39] and by Young [248,249]. This theory is
discussed in more detail in Section 3.4 of this article, and therefore here we recall only the salient
features. From those theoretical works it follows that two-dimensional systems possess only quasi-long-
ranged positional order characterized by algebraic decay of the two-particle correlation function. The
KTHNY theory predicts that melting in two-dimensions occurs via two continuous phase transitions. In

Fig. 41. Schematic representation of the phase diagram for the two-dimensional Lennard-Jones system.
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the ®rst transition, due to dissociation of dislocation pairs, the system looses the quasi-long-range positional
order, but retains the quasi-long-range orientational order. This corresponds to the formation of the so-
called hexatic phase. The second stage of melting is connected with the disclination-unbinding transition,
occurring at higher temperature and leading to the formation of an isotropic two-dimensional liquid.

The scenario predicted by the KTHNY theory is considerably altered by the presence of periodic
substrate potential and the actual mechanism of melting depends on the symmetry and size of the
substrate surface as well as on the amplitude of the periodic surface potential [39]. We shall come back
to this problem later in Section 5.2.

There are also other theories [255,256,341±343] that predict the usual ®rst-order melting in two-
dimensional systems. The concept of ®rst-order melting was also advocated by Abraham [32,74], who
argued that the loss of positional order is negligible in real systems due to their limited, though
macroscopic, size.

Computer simulation studies [32,59,74,329,330,333] as well as experimental data [344±348] do not
provide an univocal answer to the problem of melting in two-dimensions. In real adsorption
experiments the assumption of two-dimensionality of adsorbed ®lms is seldom ful®lled. Out-of-plane
movement of adsorbed particles is expected to be an important factor which in¯uences the properties
and stability of all possible phases in monolayer ®lms [63,203].

Monte Carlo simulations [131,320] and theoretical calculations [203,322] performed for monolayer
systems in three-dimensional space at different ®lm density clearly demonstrated that the critical as
well as the triple point temperatures exhibit deviations from the values corresponding to strictly two-
dimensional space.

For example, a Monte Carlo study by Patrykiejew et al. [131] has shown that the triple point of a
monolayer allowed to relax along the axis perpendicular to the solid substrate surface is located at the
temperature T�t � 0:38� 0:01. This value is slightly lower than the value of about 0.4, found in two-
dimensional systems as quoted above. Of course, this shift in the melting temperature may be also
attributed to ®nite size effects and to the assumed rather small cut-off distance for the interaction
potential (set at 2:5s). It cannot be entirely ruled out, however, that the effects due to vertical motion of
adatoms have any in¯uence on the triple point temperature. It should be emphasized, however, that in
the systems considered in Ref. [131] the adsorbed ®lm was strongly pinned to the surface. Thus, even at
the temperatures well above the triple point desorption and/or promotion of the second layer were not
observed (cf. Fig. 42). On the other hand, a simulation run performed for the density r� � 0:81, which
is slightly higher than the triple point density of the two-dimensional Lennard-Jones system (r�t � 0:79
[329]), quite clearly demonstrated that the second layer promotion occurs at considerably lower
temperature. This effect illustrates Fig. 43 which shows the temperature changes of the heat capacity
for a series of systems with different density. Apart from a sharp peak at the temperature of T� � 0:38,
which marks the triple point melting, another broad maxima at considerably higher temperatures are
present. These peaks are due to desorption from the ®rst layer and the promotion of the second layer as
con®rmed by the density pro®les calculated at different temperatures. In the case of a high density
(r� � 0:81) ®lm, only one rather broad peak is found. In this case the promotion of the second layer as
well as desorption both start at considerably lower temperatures than in the systems of lower density,
while the melting point moves gradually towards higher temperatures for the densities exceeding the
triple point value. Thus, the broad heat capacity peak is due to combined effects of melting, second
layer promotion and desorption phenomena. Consequently, it is impossible to precisely locate the
melting point from a study of the speci®c heat.
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5.2. Films on square and rectangular lattices: experimental background

In the case when the gas±solid potential exhibits periodic variations due to the lattice structure of the
surface, a competition between the surface corrugation and the adsorbate±adsorbate interactions
becomes a major factor determining the structure of adsorbed layers. In general, the adsorbate±

Fig. 42. Density pro®les for the Lennard-Jones ¯uid in contact with a uniform attractive surface at the temperature

T� � kT=egg � 0:8 and at different surface densities r� shown in the ®gure. The results given in the inset correspond to the

density exceeding the triple point density of the two-dimensional uniform Lennard-Jones system (adapted from Ref. [131]).

Fig. 43. The heat capacity curves for the Lennard-Jones ¯uid of different densities (shown in the ®gure) in contact with a

uniform attractive surface (from Ref. [131]).
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adsorbate interaction tends to enforce the formation of the hexagonal close-packed (h.c.p.)
incommensurate solid phase in the monolayer ®lm at low temperatures. On the other hand, the
corrugated surface potential favors the formation of registered (or commensurate) structures. The actual
structure of the ®lm may be quite complicated and characterized by a highly nonuniform spatial
distribution of adsorbed atoms within the ®lm. In the most intensively studied case of adsorption on
substrates with a hexagonal symmetry of the surface lattice, such as graphite [51,349±351], boron
nitride [187,352], dense (111) plane of metal crystals (Pt, Cu, Ag) [14,19,353±356] and lamellar
dihalides [138], both the commensurate and the incommensurate solid phases have the same symmetry
and differ only by the spacing between neighboring atoms and by the orientation of the adsorbed layer
lattice relative to the surface lattice [19,40,357±359]. In many cases the structure of the
incommensurate phase can be described by the domain wall formalism [61,89] as already discussed
in Section 3.3.

In the case of adsorption on surfaces of square and rectangular symmetry, such as low index planes
((100) and (110)) of the face centered crystals of various metals [20,94,97,106,360±362] or on the (100)
plane of ionic regular crystals of MgO [108,363±367] and alkali halides [146,368,369], the situation
looks quite different. Competing adsorbate±adsorbate and adsorbate±substrate interactions give rise to
the formation of various registered superstructures [15], uniaxially ordered phases [370] as well as to
various incommensurate phases [371].

For a rather weak physical adsorption on (100) planes of f.c.c. metal crystals, hexagonal structures in
the monolayer ®lms are usually found. Good examples of such systems are Xe ®lms on Cu(100)
[97,372] and Xe and Kr ®lms on Pd(100) [94,95]. In some cases, however, different structures were
also observed. Carbon monoxide adsorbed on Ni(100) and on Cu(100) [373], studied by LEED, Auger
and work function measurements, was found to show the c�2� 2� structure of square symmetry as well
as an hexagonal structure. A recent infrared re¯ection±absorption studies [374] suggested that the
�3� 5� structure may be present at the surface coverage of 0.6 monolayer. Kr adsorbed on the Ir(100)
surface [375] was also reported to form a �3� 5� superstructure as well as a closed packed hexagonal
phase.

A RHEED study of selenium adsorbed on Ni(100) [130] (see also Section 4.1) has shown the
existence of the c�2� 2� as well as the p�2� 2� ordered commensurate structures in addition to various
disordered phases. Symmetry arguments indicated that the phase diagram may belong to the
universality class of the Ashkin±Teller model [301].

In the case of adsorption on the (100) plane of ionic crystals of metal oxides (MgO, NiO) and of
alkali halides (NaCl, KCl, LiF, RbCl) the formation of various commensurate as well as
incommensurate phases was observed, despite several problems with the preparation of substrates
characterized by suf®ciently high surface homogeneity [376±378]. One particular exemption is the
MgO smoke particles, obtained by burning magnesium ribbons in a dry atmosphere, consisting of
regular crystallites of the mean size about 2000 AÊ and with the predominantly exposed (100) plane
[137] of the structure shown in Fig. 44.

Thermodynamic and structural studies of adsorption of noble gases (Ar, Kr and Xe) and small
molecules of CH4 [108,363±365] demonstrated important differences in their behavior. Low
temperature adsorption isotherms for noble gases show the presence of two phase transitions which
correspond to the 2D gas condensation followed by a transition between two condensed phases (see
Fig. 45). Neutron diffraction measurements of Ar monolayer ®lms allowed to identify two different
ordered structures; the commensurate �2� 3� phase which is stable for the surface coverages between
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0.5 and 0.8 and the denser incommensurate h.c.p. phase stable near the monolayer completion. Both Kr
and Xe were found to form more or less distorted hexagonal incommensurate phases [363,379], so that
the ®rst transition can be interpreted as a 2D gas to 2D liquid condensation while the second transition
is the 2D liquid to 2D incommensurate solid transition. In both cases the estimated triple point
temperatures were found to agree quite well with the prediction Tt;2D=Tt;3D � 0:61 [380]. In the case of
the CH4=MgO system, the adsorption isotherms exhibit only one step connected with the transition
from 2D dilute gas to the condensed commensurate c�2� 2� structure, as indicated by neutron
diffraction [365], LEED [381] and helium scattering [382] studies. Neutron scattering data also allowed

Fig. 44. Schematic representation of the (100) MgO surface. Mg2� (of the size dMg2� � 1:72AÊ ) and O2ÿ (of the size

dO2ÿ � 2:52AÊ ) ions are shown as ®lled and open circles, respectively.

Fig. 45. Examples of adsorption isotherms for Xe/MgO system at different temperatures (adapted from Ref. [108]): (a)

T�96.86 K; (b) 100.47 K; (c) 106.20 K; (d) 108.44 K; (e) 111.02 K; (f) 116.14 K; 118.72 K; (h) 121.15 K; (i) 126.17 K and (j)

131.19 K. Dashed lines show the estimated phase boundaries between the gas, liquid and solid monolayer phases. (Adapted

from Ref. [108].)
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to establish that the bilayer ®lm of methane retains a commensurate structure at low temperatures up to
10 K [365]. The stability of the commensurate structure of CH4 on MgO is surely connected with the
surface corrugation and a rather good agreement occurs between the geometric surface lattice structure,
with the second nearest neighbor distance equal to 4.21 AÊ , and the methane molecule diameter equal to
4.17 AÊ [383].

Apart from adsorption of simple spherical molecules the adsorption of various linear molecules such
as N2;C2H2;CO;CO2 on MgO was also studied [108,367,384±386]. Some aspects of structural
properties of such ®lms and in particular orientational ordering of adsorbed molecules will be
considered in Section 5.5.

Adsorption on ionic crystals of alkali halides concentrated mostly on molecular adsorbates
[99,100,387,388], though some examples of detailed studies of simple atomic adsorbates (noble gases)
were reported as well [376,389±393]. In such cases the adsorbed monolayers were observed to form
distorted axially ordered hexagonal lattices [392].

A much stronger tendency towards axial ordering was found in adsorption on surfaces of rectangular
shape of the unit cell, such as the (110) plane of f.c.c. metal crystals [17,18,20,103,360,394±398]. The
Xe/Ag(110) monolayer was found to form an axially ordered hexagonal lattice [360], while the Xe/
Cu(110) ®lm orders into a c�2� 2� commensurate phase which transforms into a more dense, also
axially ordered hexagonal lattice [20,360]. LEED measurements for nitrogen adsorbed on Ni(110) [18]
showed the formation of a commensurate �2� 1� structure at low densities, a ¯uid (disordered) phase
at intermediate densities and an incommensurate solid phase at high densities. A recent He atom
diffraction study of nitrogen adsorbed on the Cu(110) surface [23] demonstrated the formation of a
high-order commensurate pinwheel structure (see Fig. 46), earlier observed for CO adsorption on
graphite [399]. This experimental observation was also con®rmed by a molecular dynamics simulation
[23]. Axially ordered structures were also observed by Fan and Ignatiev [400] in K and Cs monolayers
on Cu(110).

LEED [401] and electron energy-loss spectroscopic [402] studies of O/Mo(110) showed the
formation of the ordered p�2� 2� structure.

Fig. 46. Schematic representation of the high-order commensurate pinwheel structure of N2 on Cu(110) surface proposed by

Zeppenfeld et al. [23].
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A common feature of all the adsorption systems mentioned above is that the size of the adsorbed
atoms and molecules is so large that it does not allow for the formation of the �1� 1� structure. In the
case of nitrogen adsorbed on Ni(110), LEED studies indicated, however, that such a dense ordered
structure may be stable under suitable conditions [18].

In the following sections we shall discuss theoretical and computer simulation studies for several
model and experimental systems which exhibit different ordered structures.

5.3. Two-dimensional ®lms on lattices with square and rectangular symmetry

Understanding the behavior of truly two-dimensional systems is of fundamental interest for the
theory of phase transitions [72] and provides the ground for the development of methods which may
allow to characterize better the surface properties of various materials. In Section 5.1 we have already
discussed the properties of two-dimensional layers on ¯at, noncorrugated surfaces. Here we shall
consider the effects of surface corrugation on the behavior of such systems. Our discussion heavily rests
upon the results stemming from Monte Carlo simulation and theoretical studies.

Important information about the ordering in two-dimensional ®lms formed on crystalline surfaces
can be derived from the ground state calculations [112,131]. Knowledge about the ground state
properties of adsorbed ®lms is of interest by itself [112,113,294,403,404], and it provides important
information for the appropriate use of computer simulations at ®nite temperatures. In particular it
allows construction of the starting con®gurations that are close to the equilibrium arrangement of
adsorbed species at low temperatures.

Bruch and Venables [112] considered the relation between the surface lattice and the adsorbed layer
geometry in two-dimensional ®lms adsorbed on crystals of different symmetry. They concentrated the
discussion on the effects due to the corrugation potential and formulated explicit conditions for uniaxial
registry. In that treatment the adsorbed ®lm was assumed to be uniform in a sense that it was strictly
two-dimensional and possessed a well de®ned lattice structure. The results obtained by Bruch and
Venables must be considered as a sort of zeroth-order approximation only, since they did not attempt to
minimize the system total energy, but rather focused on the calculations of the registry energy exerted
by the surface corrugation potential only.

Determination of stable structures that may appear in two-dimensional adsorbed layers subjected to
the surface potential of ®nite corrugation is not a trivial task even at zero temperature. In the case of a
well de®ned lattice structure of the adsorbed layer its geometry and relation to the structure of the
underlying substrate lattice can be expressed by Eq. (2.8) where the matrix elements aij are given by
[405]:

a11 � a1 sin�fÿ W�=a1 sin�f�; a12 � a1 sin�W�=a2 sin�f�; (5.1)

a21 � a2 sin�fÿ Wÿ Z�=a1 sin�f�; a22 � a2 sin�W� Z�=a2 sin�f�: (5.2)

When the potentials representing the adsorbate±adsorbate interaction, u�r�, and the adsorbate±substrate
interaction, v2D�s�, are speci®ed, then the stable ®lm structure can be obtained by minimizing the
system energy with respect to the angles Z and W as well as with respect to a1 and a2.

Some simple examples of such calculations were reported by Patrykiejew et al. [131,133] in the case
of adsorption on model (100) and (110) planes of atomic face centered cubic crystals, assuming that the
adsorbed ®lm forms a regular hexagonal lattice or simple registered phases such as �1� 1�; c�2� 2�
and �2� 1�. It was assumed that the adsorbate±adsorbate interaction potential u�r� is given by the
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Lennard-Jones function while v2D�s� was represented as

v2D�s� � min
z
�v�s; z�� (5.3)

with v�s; z� given by Eq. (2.6).
In the case of an incommensurate hexagonal phase consisting of N atoms, the energy corresponding

to a given distance between the ®rst nearest neighbors (a�1) and to a speci®ed orientation of the adsorbed
®lm with respect to the surface lattice (W) is given by

e��a�1;W� � 12�Co
12�s�=a�1�12 ÿ Co

6�s�=a�1�6� �
1

N

XN

i�1

v�2D�s�i �; (5.4)

where all energies are expressed in units of egg and all lengths in units of the surface lattice unit vector
length a1. This energy must be then minimized with respect to both a�1 and W in order to ®nd the stable
con®guration. One readily observes that in the thermodynamic limit (N !1) such a perfect,
incommensurate, hexagonal phase has no preferred orientation [359] and the energy is given by

e��a�1� � 12�Co
12�s�=a�1�12 ÿ Co

6�s�=a�1�6� � v�2D;0; (5.5)

where v�2D;0 is the zeroth-order Fourier coef®cient of v�2D�s�� given by

v�2D;0 �
1

as

Z
as

v2D�s�� ds; (5.6)

where the integration is performed over the surface lattice cell of area as. The parameters C0
12 and C0

6

can be readily evaluated and their values depend on the assumed range of molecular interaction. In
particular, assuming that the adsorbate±adsorbate interaction is cut off at the distance equal to 2:5s one
has [132]

Co
12 � 1:001632882 and Co

6 � 1:058492141 (5.7)

and the nearest neighbor distance which minimizes the energy is equal to

a�1 � s��2Co
12=Co

6�1=6: (5.8)

Here we should mention that the problem of epitaxial rotation, i.e., the estimation of the angle W was
theoretically studied by Novaco and McTague [40,357], Shiba [85,86], Leatherman et al. [19], Hillier
and Ward [405] and by Vives and LindgaÊrd [359]. Those theories were quite successfully used for
describing structural properties of simple atomic ®lms on graphite. Bruch and Venables [112] applied
the theory of Novaco and McTague [40] to adsorption on metals with a rectangular symmetry of the
surface lattice.

In the case of registered phases, in which all adsorbed atoms are located directly above the surface
potential minima fs�s � �0:5; 0:5�a�2g we have

e�r �s�� � 8�Cr
12s
�12 ÿ Cr

6s
�6� � v�2D�s�s �; (5.9)

where the magnitudes of the parameters Cr
12 and Cr

6 depend on the assumed commensurate structure r.
In particular, for the �1� 1�; c�2� 2� and �2� 1� phases we have

C
�1�1�
12 � 1:015997141 and C

�1�1�
6 � 1:156625; (5.10)

C
c�2�2�
12 � 0:01587295532 and C

c�2�2�
6 � 0:142578125; (5.11)
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and

C
�1�2�
12 � 0:01591578 and C

�1�2�
6 � 0:1518373843: (5.12)

Using the above expressions regions of stability have been estimated corresponding to the h.c.p.
phase and the above registered phases for adsorption on the (100) and (110) planes of an f.c.c. crystal,
for the systems characterized by different sizes of the adsorbate atoms, given by s�, and with different
corrugation of the surface potential [131,133] (see Fig. 47). Of course, such calculations do not provide
any exact solution to the problem of ground state properties of incommensurate phases as they ignore
lattice distortions which arise from defects and local elastic relaxations, as discussed by Vives and
LindgaÊrd [359] as well as from the formation of a domain-wall network structure [42]. The aim of the
calculations performed by Patrykiejew et al. [131,133] was only to make a rough estimation of the
adsorbed layer structures that would be best as starting con®gurations for the Monte Carlo calculations.

A systematic ®nite temperature canonical ensemble Monte Carlo simulation study was carried out for
adsorption on the (100) [60,132] and (110) [133] planes of f.c.c. model crystals characterized by
different corrugation of the surface potential, measured by the parameter Vb in Eq. (2.6).

All the calculations were performed for a ®xed ®lm number density corresponding to the density of
fully occupied registered ®lms. Thus, in the case of small adsorbed atoms, which can form the �1� 1�
structure, the number density r0 � N=M, where N is the number of atoms and M the number of lattice
sites, was equal to 1.0, while for larger atoms, for which ordering into c�2� 2� and �2� 1� structures
occurs, the number density was equal to 0.5.

Fig. 47. Regions of stability of different surface phases for the Lennard-Jones particles adsorbed on the (100) plane of model

f.c.c. crystals deduced from the ground state calculations for systems of number density equal 1.0 (from Ref. [131]).
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Now we brie¯y discuss the results obtained for adsorption on the (100) plane of an f.c.c. crystal [132]
and begin with the highly corrugated systems of adatoms with s� � 1:2, which order into the c�2� 2�,
and s� � 0:9, which form the �1� 1� registered phase. From the ground state calculations already
mentioned it was found that for the chosen parameters of the interaction potentials and for the densities
not exceeding the density of a fully ®lled registered layer, the system with s� � 1:2 forms a stable
c�2� 2� phase for the corrugation parameter Vb greater than about 0.55. In order to obtain information
about the internal structure of the adsorbed layer, and in particular to distinguish the well de®ned
ordered structures and the disordered (¯uid) phases it is convenient to de®ne appropriate bond-
orientational order parameters, which are frequently used to study and characterize ordering in various
physical systems [59,407]. The adlayers with a four-fold symmetry, as in the case of both �1� 1� and
c�2� 2� phases, and the layers with a six-fold symmetry can be characterized by the following bond-
orientational order parameters [60,132], see also Section 3.4,

ck �
1

Nb

X
i

X
j

exp�ikfij�
�����

�����; k � 4; 6: (5.13)

In order to detect axially ordered hexagonal phase one can de®ne the bond-orientational order
parameter of the form

ce
6 �

1

Nb

X
i

X
j

cos �6fij�
�����

�����: (5.14)

Basically, in an ideal situation, when only pure phases are present, one can determine their nature
looking at the behavior of those order parameters, the corresponding susceptibilities

wi �
LxLy

T�
�hc2

i i ÿ hcii2�; (5.15)

where Lx and Ly are the linear dimensions of the system in the x and y directions, and the fourth-order
cumulants [5,46,60,132]

Ui � 1ÿ hc
4
i i

3hc2
i i2

; (5.16)

where the subscript i labels the above de®ned three bond-orientational order parameters c4;c6 and ce
6.

When the adsorbed layer is in a disordered ¯uid state, the bond-orientational order parameters c6;c
e
6

de®ned above should be equal to zero since all possible mutual orientations of `̀ bonds'' appear in the
system with the same probability. The bond order parameter c4 is at all temperatures nonzero on a
square substrate, since the corrugation potential acts then like a ®eld conjugate to c4, and thus causes a
positive though small response (which only vanishes as T !1). In the case of registered phases of
square symmetry, c4 is expected to be equal to unity, while the remaining order parameters c6 and ce

6

should be equal to zero. In the hexagonal close packed phase c4 should approach zero while c6 should
be equal to unity. The behavior of ce

6 depends on the orientation of the adsorbed layer with respect to
the surface lattice and may assume different values. When the ®lm exhibits uniaxial registry but retains
perfect hexagonal structure than ce

6 � 1:0. On the other hand, when the hexagonal arrangement is not
perfect, we expect nontrivial behavior of ce

6, as well as of c4 and c6. Examples of the changes of c4

and c6 with temperature for adsorbed ®lms formed on highly corrugated systems of different size are
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shown in Fig. 48. It is quite clear that in all cases the adsorbed layers exhibit square symmetry at low
temperatures and undergo rather abrupt, though continuous, disordering as the temperature increases.
The absence of any ®nite size effects is a clear evidence that no longwavelength ¯uctuations develop.
The ®nite size effects are only manifested in the behavior of residual c6 (cf. Fig. 48b), but this merely
re¯ects the gradual approach towards the thermodynamic limit.

The situation looks quite different for a weakly corrugated surface, characterized by the corrugation
parameter of Vb � 0:2, as is demonstrated in Fig. 49. Now the low temperature phase exhibits
hexagonal symmetry and it is also evident that this phase is axially ordered, since ce

6 approaches unity
at low temperatures. In this case, disordering occurs via a sharp phase transition and it was identi®ed as
a melting transition. The behavior of the bond-orientational parameters for this system demonstrates
also that the ®lm looses axial ordering prior to the melting transition. The melting occurs at the
temperature equal to about 0.385, while already at T� � 0:375 the order parameter ce

6 drops to about
0.2. A rather convincing proof that the system remains in the solid state was provided by the
calculations of the radial distribution function at different temperatures (see Fig. 50), which look
practically the same at T� � 0:375 and at lower temperatures. On the other hand, already at T� � 0:4
the radial distribution function shows the behavior typical for a ¯uid phase. The estimation of the
epitaxial rotation angle at different temperatures was done by the analysis of several con®gurations
recorded during the simulation, and it was found that at T� � 0:3 it is equal to about 1:9o and jumps to
about 16:7� 0:2� at T� � 0:375.

Another type of behavior was observed for the system with intermediate corrugation of the surface
potential (Vb � 0:4). In this case the low temperature phase has perturbed hexagonal symmetry and
exhibits axial ordering, but along the line x � y, and hence the epitaxial rotation angle is equal to 45�.
The bond-orientational order parameters show different behavior compared to the previous case (see
Fig. 51). In particular, c6 shows quite large deviations from unity already at low temperatures, while ce

6

Fig. 48. Bond-orientational order parameters c4 (a) and c6 (b). The results shown in part (a) correspond to the systems with

s� � 1:20, three different values of the corrugation parameter Vb and three different system sizes (shown in the ®gure) while

the results shown in part (b) were obtained for Vb � 0:6 and three different system sizes (also shown in the ®gure) (from Ref.

[132]).
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Fig. 49. Bond-orientational order parameters c6, ce
6 and c4 for the system of 450 particles with s� � 1:2 adsorbed on a

weakly corrugate surface with Vb � 0:20 (from Ref. [132]).

Fig. 50. Radial distribution functions for the same system as in Fig. 49 at different temperatures (shown in the ®gure). Note

that the curves for different temperatures (apart from the one corresponding to T� � 0:40, are shifted upwards by one unit with

respect to each other (from Ref.[132]).

304 A. Patrykiejew et al. / Surface Science Reports 37 (2000) 207±344



is very small. An interesting property of this system is a clearly seen increase of the bond-orientational
order parameter c4 upon melting, so that the liquid phase shows some remnants of a square order due to
large effects of surface corrugation.

Still another important effect of the surface corrugation on the behavior of adsorbed ®lms was found
from the study of systems with different densities. As we know from the earlier discussion of a two-
dimensional uniform Lennard-Jones system in Section 5.1, the melting transition of the hexagonal
phase occurs at a constant (triple point) temperature of about T�t � 0:40, as long as the density is lower
than the triple point density. In the case of corrugated surfaces it was found that the triple point
temperature changes. In particular, corrugation lowers the triple point temperature. As long as the
density is lower than the triple point density rt the melting transition occurs at a constant temperature
T�t (Fig. 52). Only when the density becomes very high the melting transition is shifted towards higher
temperatures. This picture holds as long as the surface corrugation is low enough so that the solid phase
is incommensurate. Fig. 52 includes also the locations of heat capacity maxima for highly corrugated
systems which order into the c�2� 2� phase. In such a situation the system undergoes rather an order±
disorder transition than the melting and the disordering temperature appears to change continuously
with the ®lm density. For comparison Fig. 52 also shows the positions of the heat capacity peaks
calculated for a singe particle, using the method of Doll and Steele [180] As discussed earlier in Section
2.2.2 the appearance of that maximum results from a gradual transition from localized to mobile
adsorption and occurs at the temperature determined by the height of the potential barrier for diffusion.
It is quite clearly seen that in all cases this transition region is located at considerably lower
temperatures than the melting of the hexagonal phase and the disordering of the registered phase.

From the discussion presented above it follows that two main regimes of the ®lm behavior can be
identi®ed, with respect to the amplitude of the corrugation potential. These are the strongly and weakly
corrugated regimes. In the ®rst case the adsorbed ®lm forms registered structures while in the second

Fig. 51. Bond-orientational order parameters c6, ce
6 and c4 for the systems with s� � 1:20, and weakly corrugated surface

with Vb � 0:4 (from Ref. [132]).
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the formation of a more or less perturbed hexagonally ordered incommensurate solid phase occurs at
low temperatures.

Similar Monte Carlo calculations were performed for a series of systems with s� � 0:9 which is
predicted to form a simple �1� 1� ordered structure when the surface corrugation is high enough. It
was also found that the ®lms formed on highly corrugated surfaces disorder gradually, while those on
weakly corrugated surfaces undergo a sharp melting transition. One particular problem addressed in
that study [60] was the nature of the melting transition.

As discussed in Section 3.4, the mechanism of melting in two-dimensional systems is a subject of
considerable current interest and hot controversy [59,407,408]. One of the still open questions is the
adequacy of the picture provided by the KTHNY theory (Section 3.4) to real experimental systems. The
hitherto collected experimental data [1,59,138,344] as well as the results of numerous computer
simulations [32,59,131,253,406] seldom lead to unambiguous conclusions. The KTHNY theory
predicts a two-step melting in the case of a ¯at, noncorrugated surface, as discussed earlier (Section
3.4). This scenario is considerably altered by the presence of a periodic substrate potential and the
actual mechanism of melting depends on the symmetry and amplitude of the corrugation potential
[38,39]. In general, surface corrugation is expected to wash-out the disclination-unbinding transition,
and hence the melting becomes a one-step process. This transition may be continuous, as for the ¯at
surface, or ®rst-order. The only exception is the melting of an hexagonal adsorbate ®lm on a square
lattice characterized by weak corrugation of the adsorbate±substrate potential. In this case the theory
proposed by Nelson and Halperin [38,39] predicts that the disclination-unbinding transition is replaced
by an Ising-like transition. Thus, one expects to observe two liquid-like phases with different
orientational symmetry.

Fig. 52. Changes in the melting and disordering temperatures with the ®lm density estimated from Monte Carlo simulation

for 450 particles of s� � 1:20 for monolayer ®lms on surfaces with different values of the corrugation parameter (shown in the

®gure). The data points at r� � 0 mark the locations of the heat capacity maxima associated with the localized-to-mobile

transition for a single adsorbed atom (from Ref. [132]).
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Monte Carlo simulations performed for a series of two-dimensional systems of Lennard-Jones
particles with s� � 0:9 on surfaces with different corrugation [60] demonstrated that the mechanism of
melting is indeed considerably affected by the surface corrugation. In particular, the calculations were
performed for two different systems belonging to the weakly corrugated regime. In order to determine
the order and nature of the melting transition the behavior of the fourth-order cumulants of the bond-
orientational order parameters, as de®ned by Eq. (5.16), for systems of different size was studied.

It is well known [64,409] that in the case of a second order phase transition the cumulants reach a
trivial limit of 2=3 at the temperatures well below the transition point and zero at the temperatures well
above the transition point. At the transition temperature the cumulants for different system sizes should
reach a common nontrivial intersection point U� with the magnitude of U� depending on the
universality class of the phase transition. The results presented in Fig. 53 seem to con®rm the predic-
tions of the KTHNY theory. At the temperature T� � 0:4 the bond-orientational order parameters c6

and ce
6 both exhibit a sudden, though small, drop. Thus, above that temperature the system retains a

considerable orientational order. According to the KTHNY theory this ®rst transition, due to dissociation of
dislocation pairs, transforms the solid phase into an hexatic phase. Then a second transition occurs at
the temperature of about 0.485, which leads to the loss of orientational order in the system. The
behavior of UL, also depicted in Fig. 53, shows that the cumulants for different systems sizes do show a
common intersection at U� close to 0.61. This value of the cumulant ®xed point corresponds to the
universality class of the Ising model [64], exactly what the theory predicts for this case (Section 3.4).

The above conclusion must be treated with some care. The simulation studies were carried out for
rather modest system sizes and no attempts were made to determine the real nature of the intervening
phase, which appears between the solid and ¯uid phases. A possible answer to this problem might be
obtained by the calculations of the bond-orientational correlation function, successfully used in the case
of uniform two-dimensional systems [59].

Fig. 53. Bond-orientational order parameters c6 and ce
6 for the two-dimensional system of 894 particles with s� � 0:9

adsorbed on the surface of low corrugation, characterized by Vb � 0:1, and the size of 32� 28 surface unit cells as well as the

fourth-order cumulants U6�L� for different system sizes obtained from Monte Carlo simulation (from Ref. [60]).
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Similar studies were carried out for two-dimensional ®lms formed on the (110) plane of f.c.c. model
crystals of different corrugation [132]. In such a case, the corrugated surface potential has quite
different properties than that corresponding to the (100) plane. In particular, the potential barriers for
diffusion in the x and y directions are different, so that one can expect a strong tendency towards the
formation of uniaxially ordered phases, as observed in numerous experimental studies [18,20,103,395±
397] and predicted by theoretical calculations [112,113]. Note that the potential barriers for diffusion
do not scale linearly with the corrugation parameter Vb, but rapidly decrease with Vb.

Another consequence of the difference in the surface lattice structure is the possibility that
different registered phases form, namely �2� 1� and c�2� 2�, of the same number density equal to
0.5. The ground state calculations, performed in a similar way as in the case of the (100) substrate
lattice, allowed to estimate the regimes of s� and the corrugation parameter Vb in which those
registered structure are more stable than the hexagonal phase (Fig. 54). In order to determine the
internal structure of the ordered phases as well as to locate any possible phase transitions, the above
de®ned bond-orientational order parameters were supplemented by the additional bond-orientational
order parameter

cr �
1

Nb

X
i

X
j

cos �wfij�
�����

����� (5.17)

with

w � 2p=a0; a0 � cosÿ1�1=
���
3
p
� � 0:95531662 (5.18)

Fig. 54. Regions of stability of different surface phases for the Lennard-Jones particles adsorbed on the (110) plane of model

f.c.c. crystals deduced from the ground state calculations for systems of number density 0.5 (from Ref. [133]).
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which was speci®cally constructed to indicate the presence of the c�2� 2� phase on the rectangular
lattice of the (110) plane of an f.c.c. crystal.

Another possibility of detecting the registered �2� 1� and c�2� 2� phases and to study the nature of
the possible order±disorder transitions is to take into account that the surface can be considered as
composed of four interpenetrating sublattices (see Section 3.1) and apply Ising-like order parameters,
de®ned by Eqs. (3.2) and (3.3), and the appropriate fourth-order cumulants, de®ned in the same way as
those given by Eq. (5.16).

Monte Carlo simulations performed for the systems, which according to the ground state predictions
should order into the �2� 1� and c�2� 2� structures demonstrated rather unexpected differences in
their behavior. While the system with the �2� 1� ordered state was found to show an Ising-like order±
disorder transition (Fig. 55), the system ordering into the c�2� 2� structure exhibited gradual
disordering, without any trace of a phase transition (Fig. 56). A possible explanation of the gradual
disordering of the c�2� 2� structure can be given by taking into account a large difference between the

Fig. 55. Plots of the Ising-like order parameter c�2�1� (a) and the corresponding fourth-order cumulant (b) versus

temperature for the system of Lennard-Jones particles with s� � 1:20 adsorbed on the (110) plane of a model f.c.c. crystal

with the corrugation parameter Vb � 1:0 and for different sizes of the simulation cell. Note that the number density in all

systems is the same and equal to 0.5 (from Ref. [133]).
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potential barriers for diffusion in the x and y directions. In particular it was found that disordering is
mostly associated with a gradual increase of the translational freedom along the x direction only, and
hence looks very similar to that predicted by the one-dimensional Frank±van der Merwe theory [246].
Uniaxial ordering appeared to be also present in the ®lms formed on weakly corrugated surfaces. The
structure of the adsorbate lattice was found to be rectangular rather than hexagonal and its disordering
occurs via rather sharp transitions at temperatures depending on the surface corrugation as well as the
relative size of adsorbed atoms and the surface unit lattice cell. For suf®ciently low surface corrugation
the adsorbed ®lm was observed to be incommensurate in the x direction as is demonstrated by Fig. 57
which shows the behavior of the density Fourier coef®cients

rqkx ;ky
�
X

ri

exp�iri � qkx;ky
�

�����
�����; (5.19)

Fig. 56. Plots of the Ising-like order parameter cc�2�2� (a) and the corresponding fourth-order cumulant (b) versus

temperature for the system of Lennard-Jones particles with s� � 1:55 adsorbed on the (110) plane of a model f.c.c. crystal

with the corrugation parameter Vb � 1:0 and for different sizes of the simulation cell. Note that the number density in all

systems is the same and equal to 0.5 (from Ref. [133]).
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where qkx;ky
denote the reciprocal surface lattice vectors

qkx;ky
� 2p�kxb1; kyb2�; (5.20)

where kx and ky are integers.
The internal structure of the low temperature phases may be quite complex and cannot always be

represented by a simple well de®ned lattice. Fig. 58a shows the example of a typical con®guration
recorded during the Monte Carlo simulation at a very low temperature of T� � 0:05, which shows the
formation of incommensurate strip-like structure with the rotational alignment of the solid phase and
the presence of frozen-in gas±solid coexistence. The estimated tilting angle for the solid phase (see Fig.
58b) was found to be equal to about 71� 1� for this particular example. It is interesting that rather
simple ground state calculations for a model strip-like structure of different width (cf. Fig. 58b) allowed
to estimate the tilting angle. It occurred that the system energy reaches a minimum for the tilting angle
just about 71� irrespective of the strip width (see Fig. 58c). Also, the asymptotic (T� ! 0) behavior of
the appropriate bond-orientational order parameters c6;c

e
6 and c4 was found to be in a good qualitative

agreement with the assumption of that value for the tilting angle.

5.4. Dense monolayer and bilayer ®lms on a square lattice

Real adsorption systems usually show some effects of out-of-plane motion of adsorbed particles,
even at low temperatures. The increase of the pressure, or the chemical potential, for the monolayer
®lm may induce many new phenomena. What actually happens to the ®lm depends crucially on the
strength of the adsorbate±adsorbate and the adsorbate±adsorbent interaction, as already discussed in
Section 4.2. Also the surface corrugation is expected to be a very important factor in¯uencing the ®lm
behavior.

Possible scenarios may include the appearance of layering transitions leading to the formation of
compact three-dimensional crystallites, promotion of the second layer due to melting and disordering of
the ®rst adsorbed layer as well as simple desorption of particles due to an increase in their kinetic
energy. Also, the structure of adsorbed layers adjacent to the substrate surface may change upon the
formation of higher layers, so that various commensurate±incommensurate transitions may occur in the
®lm.

The problem of monolayer stability is closely related to the wetting of a substrate by an adsorbed
®lm. In a recent paper by Phillips [410] is was demonstrated via the molecular dynamics simulation and
analytic solution of the elastic continuum models that three different mechanisms may be responsible
for the instability of the adsorbed monolayer and the promotion of the second, as well as higher, layers.
In a strongly adsorbed ®lm, the promotion of the second layer, under the speci®ed thermodynamic
conditions of temperature and pressure, occurs mostly due to migration of the atoms located at the
edges of adsorbed islands of a compact two-dimensional solid layer. This process may be also
accompanied by, much more rarely occurring, movements of individual atoms from the interior of the
island to the second layer, if they happen to gain enough kinetic energy. These two mechanisms were
observed also in the case of melting in dense monolayer ®lms as will be discussed later. The third
possible mechanism leading to the promotion of higher layers may be a sudden promotion of groups of
adsorbed atoms due to the response to structural instability in the highly compressed solid layer. This
last mechanism is most likely to occur in dense and relatively weakly adsorbed ®lms in which stresses
and strains are of particular importance.
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Of course, the above mentioned effects are most likely to occur in adsorbed ®lms formed on rather
weakly corrugated surfaces, since such systems are most likely to form islands of a high density solid
phase. In the case of strongly corrugated surfaces, on which the registered ®lms are usually found, the
promotion of the higher layers is not likely to occur. It can be rather expected that only a suf®cient
increase in the temperature may induce disordering which is accompanied and/or followed by
desorption.

Model Monte Carlo studies of such systems were performed by Patrykiejew et al. [63,163], for a
series of very similar systems as those described in the previous section, but assuming a full three-
dimensional nature of the system. It was observed that monolayer ®lms of number density equal to a
fully ®lled registered �1� 1� phase as well as ®lms of higher density formed on highly corrugated

Fig. 57. The behavior of the density Fourier coef®cients rqkx ;ky
for the system of 450 Lennard-Jones particles adsorbed on the

(110) plane of a model f.c.c. crystal surface of the size 30� 30 unit lattice cells and the corrugation parameter Vb � 0:4 at

different temperatures shown in the ®gure (a). (b) Same as (a) but for a highly corrugated surface (Vb � 1:0�. The results for

the two lowest temperatures correspond to the ordered �2� 1� structure (from Ref. [133]).

312 A. Patrykiejew et al. / Surface Science Reports 37 (2000) 207±344



surfaces do not exhibit any phase transition due to the possible order±disorder transition but the loss of
epitaxial ordering occurs gradually at rather high temperatures and is accompanied by desorption (Fig.
59). In the case of ®lms with the density exceeding the density of the �1� 1� structure, the excess
particles form the second layer which appears to also order into the �1� 1� structure with the adsorbed
particles located over the centers of squares formed by the particles of the ®rst layer. Fig. 59b
demonstrates that desorption from the second layer of a dense bilayer system starts at considerably
lower temperatures than from the ®rst layer. This ®gure also shows that the presence of a dense second
layer stabilizes the ®rst adsorbed layer.

The stability of the ordered �1� 1� structure in the ®rst layer is quite sensitive to even small changes
of the surface corrugation as well as to the density changes in the ®lm. Already, for the corrugation
parameter equal to 0.9 and as soon as the ®lm number density becomes larger than 1.0 the adsorbed
layer shows a quite high tendency to form an uniaxially ordered phase in the ®rst layer. Only when the
®lm density becomes suf®ciently high the adsorption in the second layer occurs. It is interesting to note
that the formation of the second layer causes gradual restructuring of the ®rst layer, which recovers the

Fig. 57. (Continued ).
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Fig. 58. (a) A snap-shot of the equilibrium con®guration for the system of 200 Lennard-Jones particles with s� � 1:20,

adsorbed on the (110) plane of a model f.c.c. crystal surface characterized by the corrugation parameter Vb � 0:8 at the

temperature of T� � 0:05. Particles separating differently oriented domains are shown as ®lled circles and lines show the

orientation of different domains. (b) Schematic representation of the orientationally aligned striplike structure used in the

ground state calculations of the tilting angle W. (c) Changes of the energy of the structure depicted in (b) with the tilting angle

and obtained for different number of particles in a single strip (nl) (from Ref. [133]).
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Fig. 59. Temperature changes of the heat capacity (a) and the layer densities (b) for the adsorbed ®lms of Lennard-Jones

particles of s� � 0:8 of different number density (shown in the ®gure) formed on the (100) plane of a model f.c.c. crystal

characterized by the high corrugation of the surface potential (corrugation parameter Vb � 1:0) obtained from a Monte Carlo

simulation performed for the system of size 16� 16� 10 (from Ref. [163]).
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ordered �1� 1� structure (see Fig. 60). Thus, the appearance of the second layer exerts a force which
pushed the adsorbed atoms from the ®rst layer back into the registry positions. The question of the
equilibria involving monolayer and bilayer systems was addressed in experimental [411] as well as in
theoretical [91,92,412] and computer simulation [63,162,413] studies. The systems that have been
studied theoretically and with the help of computer simulations were quite different, however. The
substrate was assumed to be either noncorrugated [91,92] or to possess a graphite-like structure [162].
The available experimental data refer only to adsorption on graphite [411] and such systems are beyond

Fig. 60. Snap shot con®gurations for the adsorbed layer of Lennard-Jones particles of s� � 0:8 on the (100) plane of the

model f.c.c. crystal with the corrugation parameter Vb � 0:9 recorded at the temperature T� � 0:02 and the total ®lm number

density equal to rn � 1:5625 (a) and 2.0 (b). Particles located in the ®rst layer are represented by open circles while those

from the second layer by ®lled circles (from Ref. [163]).
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the scope of our article. We mention here only that in general the formation of the second, as well as the
higher layers was found to be a very important factor determining the structure of the lower layers and,
in some cases, it was found to lead to the commensurate±incommensurate transition between layers [162].

Instead of working in the canonical ensemble, with a ®xed total density and temperature, in many
cases a new important insight into the properties of adsorbed systems can be obtained from simulations
carried out in the grand canonical ensemble, in which the controlling intensive variable is the chemical
potential. Fig. 61 shows typical examples of adsorption isotherms for the Lennard-Jones ¯uid in contact
with the (100) plane of an f.c.c. crystal characterized by the corrugation parameter Vb � 0:8 at different
temperatures and obtained from Monte Carlo simulations [63]. These isotherms demonstrate the
formation of the registered �1� 1� structure of number density rn � 1:0 at low temperatures, the
transition to a much denser incommensurate solid monolayer as well as the layering transition due to
the condensation of the second layer. The identi®cation of the different monolayer phases mentioned
above was done by the calculation of the average nearest neighbor distances between the adsorbed
atoms, the calculation of the density pro®les as well as by a direct inspection of the con®gurations
recorded during the simulation runs. Fig. 62 (a), (b) presents examples of the con®gurations
corresponding to the registered �1� 1� structure and to the incommensurate phase of hexagonal
symmetry, while (c) shows the density pro®les corresponding to those two phases. In the case of the
incommensurate phase the locations of adsorbed particles show pronounced deviations from planarity.

This system also shows that the formation of a second layer considerably affects the structure of the
®rst adsorbed layer. A dense incommensurate monolayer does not show a perfect hexagonal structure,
but always exhibits local distortions and defects (see Fig. 63a). On the other hand, dense bilayer ®lms
appear to be nearly perfectly hexagonally ordered (see Fig. 63b) and exhibit only a small rotation with
respect to the underlying substrate lattice. It was also shown that the low temperature monolayer has a
little lower density than the ®rst layer in a dense bilayer system. The compression of the ®rst layer due

Fig. 61. Adsorption isotherms obtained from grand canonical Monte Carlo calculations for a model system of Lennard-Jones

¯uid in contact with the (100) plane of f.c.c. crystal of the size 20� 20 lattice sites and characterized by the corrugation

parameter Vb � 0:8 at different temperatures (shown in the ®gure). (From Ref. [63].)
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to the formation of a second layer, lowers the average nearest neighbor distance by about 1% and this
value is considerably greater than predicted by theoretical calculations [92] for hexagonal ®lms formed
on a ¯at surface.

Fig. 62. (a), (b) Examples of con®gurations for the same system as in Fig. 61, recorded at the temperature T� � 0:2 and the

chemical potential m� � m=e � ÿ8:45 on both sides of the commensurate (a) to the incommensurate (b) transition. (c) The

corresponding local density pro®les (averaged over the entire surface) for both phases ((�) commensurate phase and (�)
incommensurate phase). Average densities of both phases are given in the ®gure. (From Ref. [63].)
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Fig. 64 shows the phase diagram for the system discussed above and obtained from the both grand
canonical and canonical ensemble Monte Carlo simulations. The locations of phase transitions were
established from the adsorption isotherms (cf. Fig. 61) and from the temperature changes of the heat
capacity (in the canonical ensemble), which enables to locate the melting in the ®rst as well as in the
second layer (see Fig. 65).

The data shown in Fig. 65 demonstrate that the temperature of the melting transition of the
incommensurate monolayer solid phase moves towards higher values when the density of that phase
increases. Only for the ®lms which exhibit the formation of the second layer the melting temperature is
constant and equal to about 0.5. A quite similar effect was found experimentally for nitrogen adsorbed
on graphite [55]. It was demonstrated that it is connected with a different mechanism of the melting
transition in submonolayer and dense monolayer solid ®lms. A submonolayer solid does not occupy the
entire surface but rather forms high density islands which coexist with a dilute phase. Upon melting the
more or less uniform ¯uid phase is formed and spreads over the entire surface. This cannot happen in an
already dense monolayer since there is not enough space for the ¯uid phase. The only possibility for the
liquid monolayer to appear is the decrease of the density in the ®rst layer by the promotion of the
second layer. This mechanism was found in the computer simulation studies for methane ®lms on
graphite [159] and for argon ®lms on (100)MgO [414]. Note that this last system is characterized by the
square symmetry of the surface lattice. In the case of the model systems discussed above, it was also
found that submonolayer ®lms melt without any effects due to the promotion of the second layer, while
the melting of a dense monolayer solid is accompanied by the transfer of particles from the ®rst to the
second layer (see Fig. 66). In the case of surfaces with lower corrugation of the surface potential the

Fig. 63. Examples of con®gurations for the dense monolayer ®lm at T� � 0:3 and m� � ÿ7:5 (a) and bilayer ®lm at

T� � 0:15 and m� � ÿ6:40 (b) recorded for the same system as in Fig. 61, but for a larger surface size equal to 40� 40. (From

Ref. [63].)
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same changes in the mechanism of melting were found [132], but the phase behavior of such systems
shows new features. In particular, it was found that the low temperature adsorption isotherms did not
show the presence of two phase transitions in the monolayer regime, but rather a single transition
corresponding to the gas±incommensurate solid coexistence (see Fig. 67). Only at suf®ciently high
temperatures two different phase transitions are observed. The ®rst transition corresponds to the gas±
liquid condensation, while the second transforms the liquid phase into an incommensurate solid phase.
The regimes corresponding to one and two phase transitions in the ®rst adsorbed layer meet at the triple
point temperature T�t (see Fig. 68). Calculations performed for a series of systems with gradually

Fig. 64. Phase diagram for the Lennard-Jones adsorbed bilayer ®lm formed on the (100) plane of an f.c.c. crystal

characterized by the corrugation parameter Vb � 0:8. (a) The phase diagram in the plane (rn; T
�). Filled points are the results

of grand canonical Monte Carlo calculations, while stars and diamonds correspond to the canonical ensemble calculations.

The triple line of the solid±liquid±gas coexistence in the second layer is shown as a broken vertical line. (b) Phase diagram in

the (m�; T�) plane derived from the grand canonical ensemble Monte Carlo simulation. The gas±commensurate �1� 1� phase

transition points are shown as ®lled points, the commensurate±incommensurate transition points in the ®rst layer are

represented by open points, while the layering transition points in the second layer are marked by open diamonds. The location

of the gas±�1� 1� phase transition at zero temperature was obtained from the ground state calculations, while the locations of

the commensurate±incommensurate and layering transitions at zero temperature were estimated by extrapolation of the results

obtained for ®nite temperatures. (From Ref. [63].)
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decreasing surface corrugation demonstrated that the triple point temperature converges to the value
corresponding to the adsorption on a ¯at surface, which is equal to about 0.4, quite the same as found
for a strictly two-dimensional and uniform Lennard-Jones system (cf. Section 5.1). It should be noted

Fig. 65. The heat capacity curves for the Lennard-Jones adsorbed ®lms of different density (shown in the ®gure) formed on

the (100) plane of f.c.c. crystal characterized by the corrugation parameter Vb � 0:8 The peaks at the temperature of about

T� � 0:4 obtained for the systems with the two highest values of the density correspond to the triple-point melting of the second

layer, while the remaining peaks result from the melting of the monolayer incommensurate solid phase. (From Ref. [63].)

Fig. 66. Temperature changes in the densities of the ®rst and second layers in the ®lms of different total number densities

(shown in the ®gure) formed on the (100) plane of f.c.c. model crystal characterized by the corrugation parameter Vb � 0:8
and obtained from the canonical ensemble Monte Carlo simulation study. The upper (lower) family of curves corresponds to

the ®rst (second) layer. (From Ref. [63].)
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Fig. 67. Adsorption isotherms obtained from grand canonical Monte Carlo calculations for a model system of Lennard-Jones

¯uid in contact with the (100) plane of a f.c.c. crystal of the size 20� 20 lattice sites and characterized by the corrugation

parameter Vb � 0:6 at different temperatures (shown in the ®gure). (From Ref. [163].)

Fig. 68. Phase diagram for the Lennard-Jones adsorbed bilayer ®lm formed on the (100) plane of an f.c.c. crystal

characterized by the corrugation parameter Vb � 0:6 in the (m�; T�) plane derived from the grand canonical ensemble Monte

Carlo simulation. The gas±incommensurate solid and the liquid±incommensurate solid transition points are marked by ®lled

circles, the gas±liquid transition points are represented by ®lled squares and the layering transition in the second layer by ®lled

diamonds. The critical points for the condensation in the ®rst and in the second layer are shown as open circles, while the triple

point in the monolayer is marked by an open square. (From Ref. [163].)
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that the behavior of adsorption isotherms as those shown in Fig. 67 is very often observed in real
systems [51,108,138]. Of course, the results presented above do not correspond directly to any real
situation, primarily because the assumed relative size of the adsorbed atoms and the surface unit cell is
much smaller than in most experimental systems. As it was already shown in Section 5.2, the adsorbed
atoms are usually too large to order into the �1� 1� structure. Both experimental [108] and theoretical
[15] studies of even quite small argon atoms adsorbed on the (100) plane of MgO crystals pointed out
that the adsorbed ®lms order into the �2� 3� high order commensurate phase at low temperatures.
Meichel et al. [15] presented theoretical calculations of the ground state energy for different high-order
commensurate superstructures formed by noble gases (Ar, Kr, Xe) on the (100)MgO surface and found
that in the case of Kr and Xe the most stable state corresponds to the �2� 2� structure, though it was
also shown that some other high-order commensurate structures may also occur. At ®nite temperatures,
the stability of the �2� 3� structure for Ar was found to be limited only to submonolayer coverages and
at the onset of the second layer formation a little denser �2� 4� structure is formed. This was
demonstrated by LEED measurements and supported by theoretical calculations. In the case of krypton,
both experiment and theory showed that the �2� 2� structure competes with the �2� 8� structure. In
the case of the largest Xe atoms, the LEED experiments suggested that the monolayer ®lm is
incommensurate with the substrate and shows hexagonal packing.

5.5. Orientational effects in molecular ®lms

Considering the adsorption of nonspherical molecules on crystalline surfaces one faces additional
complications due to possible orientational ordering of the adsorbed molecules. Such effects were
demonstrated to be of great importance for the structure and thermodynamic properties in many
experimental systems [55,147,415±418]. The most thoroughly studied systems are the monolayer ®lms
of carbon monoxide and nitrogen on graphite [55]. The phase diagram for a monolayer of nitrogen on
graphite is probably the best characterized case in molecular adsorption. Numerous experimental [415±
417,419,420], theoretical [418,421±424] and computer simulation [55,425±428] studies were carried
out in order to understand the role played by molecular nonsphericity in such ®lms. As compared to the
®lms of simple spherical adsorbates, in particular noble gases, which already exhibit very complex
phase behavior of adsorbed layers (see previous sections), the adsorbed ®lms consisting of nonspherical
molecules show many new features.

Already the mean ®eld theory applied to study orientational effects in two-dimensional point
quadrupoles arranged on an hexagonal lattice under the in¯uence of a uniform substrate ®eld predicted
the appearance of four distinct orientationally ordered phases [421]. Experiments for nitrogen and
carbon monoxide ®lms on graphite revealed the presence of three of them [400,416,418,419,429,430].
Only the so-called `̀ ferro'' phase was not found, but it is not physically feasible to occur in such
systems as its formations requires rather strongly repulsive surface potential. Experimental ®ndings
were also supported by computer simulations [55,425±428,431,432].

Strong orientational effects were also found in numerous experimental [23,433±435], theoretical
[387,422±424,435,436] and computer simulation [23,437±439] studies of linear molecules adsorbed on
various surfaces characterized by square and rectangular symmetry.

In this section we brie¯y discuss the behavior of selected adsorbed ®lms formed on crystals with a
square symmetry of their surfaces, such as ionic alkali halides and MgO crystals, and on the (110) plane
of metal crystals. Then we consider some simple theoretical approaches based on the lattice gas model,
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which demonstrate that monolayer ®lms of linear molecules do undergo various phase transitions
connected with a different orientational ordering. Finally, we concentrate on computer simulation
studies of models and of real adsorbed ®lms formed on square surfaces with a ®nite corrugation of the
substrate potential.

The interaction of multiatomic adsorbates with a solid surface is much more complex than in the case
of simple atomic gases. Note that to specify the location of a simple homonuclear diatomic molecule
with respect to the solid surface requires a set of ®ve coordinates, three of them are the coordinates of
the center of mass and the remaining two specify the orientation of the molecular axis. Thus, in order to
calculate thermodynamic properties of an isolated molecule in the vicinity of the solid surface one
needs to evaluate ®ve-fold integrals. For instance, the Henry constant for a ¯uid of diatomic molecules
in contact with a corrugated surface is given by [440]

KH�T� � 1

A

Z
fexp�ÿbv�rc;W;j�� ÿ 1g drc dW dj; (5.21)

where rc � �xc; yc; zc� speci®es the location of the center of mass relative to the substrate and the angles
W and j specify the orientation of the molecular axis with respect to the substrate. The theoretical
description of dense systems requires the inclusion of the adsorbate±adsorbate interactions and this
introduces further complexity. The energy of interaction between a pair of simple diatomic molecules
depends of their distance and relative orientations so that evaluation of thermodynamic properties of
adsorption systems requires very tedious calculations. Various theoretical approaches and approxima-
tions have been reviewed by Patrykiejew and Sokoøowski [441].

Among the most intensively studied adsorption systems characterized by a square symmetry of the
surface lattice are CO2 and CO on (100)NaCl surface [101,387,437,439]. Those systems were mostly
studied by helium scattering [99,433] and particularly intensively by infrared spectroscopy
[101,368,387,442±444]. Also, theoretical [436] and computer simulation [437±439] studies were
reported in the literature.

Low temperature infrared measurements of Heidberg et al. [368] demonstrated that CO2 adsorbed on
NaCl undergoes a ®rst-order phase transition between the two-dimensional gas and the commensurate
solid phase. This solid phase corresponds to the �2� 1� structure in which the molecules are tilted
relative to the surface at the angle W close to 60�. A similar conclusion was reached by Lange et al.
[433] who used helium scattering and by Schimmelpfennig et al. [445] from LEED measurements. Liu
et al. [446] also studied monolayers of CO2 on NaCl by Helium scattering and found that dense
monolayer ®lms order into the �2 ���

2
p � 2

���
2
p �R45� structure. Recent molecular dynamics calculations of

Vigiani et al. [438] demonstrated also the formation of the �2� 1� herringbone commensurate phase
with the tilting angle of the molecular axis about 60�. They have performed calculations for ®nite
patches of adsorbed CO2 ®lms as well as for a system with periodic boundary conditions and found
quite important differences in the equilibrium structure of the low temperature phase. Though in both
cases the �2� 1� herringbone phase was observed, in the case of ®nite patches they found differently
oriented domains shown schematically in Fig. 69, while in the simulation with periodic boundary
conditions only one orientation of the ordered phase was observed. The domains of differently oriented
herringbone structure are separated by walls, which were found to be very stable and did not vanish
under repeated annealing. This high stability of walls was found to be directly connected with a strong
corrugation of the adsorbate±substrate potential. Quite similar calculations performed in the case of
only weakly corrugated surfaces inevitably led to the formation of one-domain structure after repeated
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annealing of the sample. While discussing the properties of CO2 ®lms on NaCl it is noteworthy that a
similar system of three-atomic OCS molecules was also found to exhibit the �2� 1� structure, as
deduced from the helium atom diffraction measurements [435]. Energy minimization calculations
indicated that the adsorbed molecules are only slightly tilted with respect to the solid surface with
molecular axes parallel to each other, but with alternate orientation (O±C±S and S±C±O) on each
sublattice.

Monte Carlo simulations for the carbon monoxide monolayer on NaCl [437] demonstrated the
formation of the p�2� 1� structure with a glide plane and with the carbon atom end down and pointing
towards an Na� ion and the tilt angle of about 24� at low temperatures. As the temperature increases,
this orientationally ordered phase undergoes a transition to the orientationally disordered �1� 1�
structure. The results of Monte Carlo simulations were found to be quite consistent with experimental
data [447,448] and with theoretical calculations [436,449,450]. The transition temperature was
estimated to lie in the range between 30� and 35�K, and above the transition temperature the adsorbed
®lms were observed to be localized.

Highly ordered structures were also observed in monolayer ®lms of various molecular adsorbates on
(100)MgO [366,451] and on (100) and (110) planes of metal crystal surfaces [18,23,452±456]. In most
cases chemisorption rather than physical adsorption occurs and is often accompanied by the
dissociation of adsorbed molecules [454]. Such systems are beyond the scope of the present review.
Here we just mention recent molecular dynamics simulation study of water adsorption on the
(100)MgO surface performed by Girardet et al. [456]. From the ground state calculations, based on the
energy minimization for various high order commensurate structures, it was found that the most stable
con®guration corresponds to the �1� 1� structure. It should be noted that experimental studies [457±
459] pointed out that the monolayer ®lm of water forms a very stable �3� 2� structure as well as a
denser structure of unknown internal structure that is stable only at suf®ciently low temperatures below
180 K. Molecular dynamics simulation con®rmed the existence of the �3� 2� structure at low
temperatures with the water molecules oriented parallel to the surface and the water molecular
symmetry axis pointing to �45� and �135�. Upon the increase of the total density of admolecules in

Fig. 69. The domain structure of the CO2 monolayer on the NaCl crystal (from Ref. [438]).
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the system the structure of the adsorbed monolayer started to change and complicated structures with
domains of the �1� 1�; �2� 1� as well as �3� 2� phases were observed. When the second layer was
formed on the top of the ®rst layer, it was found to exhibit hexagonal symmetry. For still higher water
concentration, the second and higher layers started to develop an ice-like three-dimensional structure
without any visible effect on the structure of the ®rst layer. This peculiar behavior was attributed to the
lack of hydrogen bonds between the molecules of the second and the ®rst layers, while the molecules
located in the second and higher layers are evidently subject to weak association through hydrogen bonds.

In general the orientational transitions observed in various adsorbed ®lms of heteroatomic molecules
on ionic crystals usually occur at considerably lower temperatures than the localized-to-mobile
transition, so that the adsorbed molecules remain tightly bonded to adsorption sites at the temperatures
well above the orientational transition. Similar behavior was also observed for simple homonuclear
molecules adsorbed on graphite [55]. This allows to use a lattice gas model formalism to investigate
orientational transitions in adsorbed ®lms [55,421±424,460,461]. A simple theoretical model for
adsorption of diatomic molecules adsorbed on a square lattice was considered by Patrykiejew [422±
424]. The model assumed that each adsorbed molecule was placed over an adsorption site with a certain
`̀ reference'' point chosen within a molecule placed directly above the center of the adsorption site. This
reference point was either the center of mass of a molecule or the center of one of the atoms. In either
case the potential of interaction between a molecule and the substrate is a function of the orientation
only. Also, the potential of interaction between a pair of molecules adsorbed on adjacent sites depends
only on their relative orientation. Note that the periodic variation of the surface potential gives rise to
the appearance of a certain potential barrier for rotation. The state of a single adsorption site is given by

r�1�i �oi� � ni�oi�; (5.22)

where ni � 0�1� when the ith site is empty (occupied) and oi � �W;j� represents the orientation of a
molecule adsorbed on the site i. In the framework of a mean-®eld approximation the behavior of the
adsorbed ®lm can be deduced from the one-particle orientation-dependent distribution function

h�1��y;o� � y~h
�1��o�; (5.23)

where y is the surface coverage. With the above assumptions one readily obtains the expression for the
Helmholtz free energy of the ®lm (per particle)

f � kT s0 �
Z

do ~h
�1��o� ln ~h

�1��o� � 1

kT
v�o� � 2y

kT

Z
do0 ~h

�1��o0�u�o;o0�
� �� �

; (5.24)

where

so � 1

y
ln�1ÿ y� � ln

y
1ÿ y

� �
(5.25)

and u�o;o0� represents the interaction potential acting between a pair of nearest neighbor admolecules.
To determine the form of the orientation distribution function and then the thermodynamic properties of
the system one can minimize the free energy, which is a functional of ~h

�1��o�, with respect to ~h
�1��o�,

which yields

kT ln �~h�1��o�l� � ÿv�o� ÿ 2y
Z

do~h
�1��o�u�o;o� (5.26)
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with

l �
Z

do exp ÿ v�o� � 2y
Z

do0~h
�1��o0�u�o;o0�

� �
=kT

� �
: (5.27)

In the limit of y! 0, i.e., for a single molecule, it was found that the surface corrugation in¯uences
molecular orientation in a very much similar way as it affects atomic diffusion from one site to another.
In particular, the con®gurational heat capacity was found to exhibit a broad peak with the maximum at
the temperature equal to

kTmax=Vr � 0:2� 0:01; (5.28)

where Vr is the potential barrier for rotation. Relationship (5.28) was found to hold independently of the
elongation of adsorbed molecules and the size of constituting atoms with respect to the size of the
surface unit cell.

When the density of the adsorbed ®lm increases, the lateral interactions between admolecules begin
to contribute to the total energy of the ®lm and may lead to the shift of the heat capacity maxima
towards higher temperatures or to exhibit discontinuities, indicating the presence of ®rst-order
orientational phase transitions [423,424]. The nature of those changes depend primarily on the
elongation of the adsorbed molecules. In the high density ®lms of such elongated molecules the
effective potential barrier for rotation is rather due to admolecule±admolecule interaction than merely
due to surface corrugation. An example of the phase diagram obtained from such mean-®eld
calculations is presented in Fig. 70.

Of course, the observed structural changes are, to a high extent, connected with the assumed rigid
lattice structure of the ®lm. In a real situation it is quite likely that the adsorbed molecules would start
to assume off-lattice positions prior to the rotational transition predicted for the lattice gas model, in
particular, in the case of adsorbed ®lms weakly bonded to the substrate surface.

Continuous space Monte Carlo simulations in the canonical ensemble have been performed for a
monolayer of homonuclear diatomics of different elongation adsorbed on the (100) plane of an f.c.c.
crystal of varying surface corrugation [462]. The simulation method was the same as used in the study
of previously discussed adsorbed ®lms of monoatomic adsorbates (see Section 5.4). Thus, the adsorbate
molecules could move freely in the three-dimensional space above the crystal surface, which was
assumed to be a source of the potential given by Eq. (2.2).

The calculations were carried out for small molecules built of two identical atoms of diameter s
bonded together at the distance d and for the total density of admolecules corresponding exactly to one
completely ®lled registered layer with one molecule per surface unit lattice cell.

It was found that the properties of the adsorbed layer are very sensitive to even small changes of the
molecular elongation and that for small elongations orientational disordering occurs at much lower
temperatures than positional disordering of registered structures.

Even for small molecules with s� � s=a � 0:8 and of elongations d� � d=a � 0:1 and 0.2, which at
suf®ciently low temperatures assume parallel orientation relative to the substrate surface with the
molecular axes along the symmetry axes of the crystal (j � kj=2 (k � 0; 1)) and form a simple �1� 1�
structure with the molecular center of mass located directly above the center of the surface unit lattice
cell, the Monte Carlo simulations clearly demonstrated that nonsphericity plays an important role and
both systems behave quite differently. Fig. 71 shows examples of the temperature changes of the heat
capacity for both systems and it is clear that the shorter molecules exhibit only a rather small and broad
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maximum, while the longer ones yield a sharp peak, which indicates the presence of a phase transition.
The calculations of the distribution functions of the orientation angles W and j demonstrated that in
both systems the loss of orientational ordering is a gradual process (see Fig. 72) and hence do not allow
to explain the anomalous behavior of the heat capacity for the system with d� � 0:2. A deeper insight
into the structure of the adlayer can be gained, however, if one probes the short range correlations
between orientations of the adsorbed molecules and considers the behavior of the appropriate order
parameters, such as

PW � hj cosWijji � 1

N

XN

i�1

1

ni

X
j�nn�
j cos�Wi ÿ Wj�j

* +
(5.29)

and

Pj � hj cosjijji �
1

N

XN

i�1

1

ni

X
j�nn�
j cos�ji ÿ jj�j

* +
; (5.30)

where the ®rst sum runs over all N molecules in the adsorbed layer and the second sum is taken over all
ni nearest neighbors of the molecule at site i. In both the above cases the order parameter Pj was found

Fig. 70. Phase diagram in the coverage �y� ± reduced temperature (T� � kT=egg) plane for a model of diatomic molecules of

s� � 1 and the elongation d� � d=a � 0:5 adsorbed on the (100) plane of an f.c.c. crystal. In the calculations it was assumed

that one atom of each adsorbed molecule is located directly over the center of the surface unit lattice cell. The symbols FR-U,

HR-U and HR-O mark the regions of stability of different phases. FR-U corresponds to the c�2� 2� phase with free rotation,

HR-U corresponds to the c�2� 2� phase with frozen rotational movement (all molecules assume vertical orientation with

respect to the surface), while HR-O is the orientationally ordered c�2� 2� phase consisting of two sublattices of differently

oriented molecules; on one sublattice the adsorbed molecules are oriented nearly perpendicularly to the surface, while on the

other sublattice the molecules exhibit only a slight tilt and are all oriented along one of the symmetry axes of the crystal (from

Ref. [423]).
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Fig. 71. Temperature changes of the heat capacity for the model monolayer ®lms of homonuclear diatomic molecules of

s� � 0:8 and two different elongations d� (shown in the ®gure) adsorbed on the (100) plane of a f.c.c. crystal as obtained from

Monte Carlo simulation (from Ref. [462]) Note that because of the use of classical (rather than quantum-mechanical)

statistical mechanics CV tends to 5=2 (in units of the Boltzmann constant) rather than zero as T ! 0.

Fig. 72. The angular distribution functions p�W� (a) and p�j� (b) for the model monolayer ®lm of homonuclear diatomic

molecules of s� � 0:8 and the elongation d� � 0:2 adsorbed on the (100) plane of an f.c.c. crystal, obtained from the

simulations at different temperatures (shown in the ®gure). From. Ref. [462].
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to change smoothly with temperature, while the behavior of the order parameter PW indicates that the
observed transition for the system with d� � 0:2 can be attributed to a quite abrupt loss of mutually
parallel alignment of neighboring molecules (see Fig. 73).

Another type of orientational behavior develops in systems of molecules with larger elongation.
Surface corrugation dominates only the positional ordering of the adsorbed ®lm and ensures registry,
while the orientational properties of the ®lm are dominated by the admolecule±admolecule interaction.
In particular, for the molecules of elongation d� � 0:4 the in-plane orientation of the molecular axes
does not agree with the symmetry axes of the surface lattice. Instead, the preferred values of the
azimuthal angle are, at suf®ciently low temperatures, 45� and 135� (see Fig. 74a), and the molecules are
tilted with respect to the surface; the distribution function for the angle W exhibits two maxima at about
34� and 57� (see Fig. 74b). This system was also found to exhibit a sharp orientational transition at the
temperature of about T� � 0:19. A direct inspection of the con®gurations recorded during the
simulation runs showed that the system exhibits quite well formed domains of the �2� 1� structure,
which are not observed at the temperatures above the transition temperature. It should be noted that
those domains of the �2� 1� structure were found to exhibit different mutual orientation and were
separated by walls, quite similar as found in the earlier discussed simulations of CO2 ®lms on MgO
[438].

As it was shown above the identi®cation of orientational ordering in molecular ®lms studied by
computer simulations can be done by the calculation of the angular distribution functions and the
angular correlation functions. In some cases, however, one needs more detailed information about the
system structure to identify the form of both orientational and positional ordering in the ®lm. For
instance, in Fig. 75 we present the distribution functions of the angles W and j for the CO adsorbed on

Fig. 73. Temperature changes of the order parameter PW for the same systems as in Fig. 72 obtained from Monte Carlo

simulation (from Ref. [51]).
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MgO, derived from the simulation due to Vu et al. [437] and obtained for a model system of
homonuclear diatomic molecules of s� � 0:9 and the elongation d� � 0:4 [462]. It is quite evident that
the orientational behavior of both systems is strikingly similar, despite the differences in the structure of
the adsorbate molecules. In particular, the distributions p�W� (Figs. 75b and d) are practically the same.
On the other hand, the distributions p�j� (Figs. 75a and c) show that the CO molecules adsorbed on the
NaCl are oriented along one of the symmetry axes of the crystal surface, while the model system of
homonuclear molecules exhibits the orientation of the adsorbed molecules along the diagonals of the
surface unit lattice cells. In the case of CO/MgO system it was shown that the ®lm orders into the
�2� 1� phase with two sublattices, while our model system shows a quite different sublattice structure.
One can probe the sublattice structure of the ®lm by recording the appropriately de®ned orientational
order parameters (for each sublattice) and the angular distribution function p0�W;j�. It is also possible
to investigate positional ordering of the adsorbed molecules by the calculation of the average
displacements of the molecular center of mass from the center of the surface unit lattice cell in the x and
y directions (Dx and Dy) in different sublattices as well as by the calculation of the corresponding
distribution functions for those displacements pp�Dx;Dy�. Fig. 76 shows the behavior of the distribution
functions p0�W;j� and pp�Dx;Dy� obtained for the above mentioned model system of homonuclear
molecules. It is quite evident that one can identify four sublattices. A direct evaluation of the
temperature changes of the average displacements hDxi and hDyi also demonstrated that the low
temperature ordered state exhibits a four-sublattice structure and that disordering destroys this
sublattice structure (see Fig. 77). Thus, despite the similarity of the angular distribution functions for
the above two systems, as demonstrated by Fig. 75, the actual structures of the low temperature ordered
states are quite different in both cases. In particular, our model system orders into the �2� 2� structure
rather than into the �2� 1� structure.

Fig. 74. The angular distribution functions p�W� (a) and p�j� (b) for the model monolayer ®lm of homonuclear diatomic

molecules of s� � 0:8 and the elongation d� � 0:4 adsorbed on the (100) plane of an f.c.c. obtained from simulations at

different temperatures (shown in the ®gure). From. Ref. [462].
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6. Final remarks

Single crystals with an orientation of their surface plane chosen such that their topmost layer, which
provides a substrate for adsorbed ®lms, has a square or rectangular symmetry provide a fascinating
`̀ laboratory'' for the study of phase transitions and critical phenomena in two dimensions. If the
strength of the corrugation potential due to the substrate surface is so strong that adsorbate atoms can be
adsorbed only in the centers of the potential wells, the lattice gas model of adsorbed monolayers can be

Fig. 75. The angular distribution functions p�j� and p�W� obtained from the Monte Carlo simulation of CO ®lm on the

(100)NaCl surface [437] and the same obtained for a model ®lm of homonuclear diatomic molecules of s� � 0:9 and the

elongation d� � 0:4 adsorbed on the (100) plane of an f.c.c. crystal [462].
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realized, and this simple description (Section 2) indeed is a reasonable approximation for several
adsorbate systems on surfaces of cubic metals. Depending on the character of the lateral interactions
between the adatoms, superstructures of various symmetry can be realized; the order±disorder
transitions of these structures provide realization of unique universality classes of critical phenomena,

Fig. 76. Two-dimensional distribution function pp�Dx;Dy� obtained from Monte Carlo simulation for a model ®lm of

homonuclear diatomic molecules of s� � 0:9 and the elongation d� � 0:4 adsorbed on the (100) plane of an f.c.c. crystal at

the temperature T� � 0:10 (from Ref. [462]).

Fig. 77. Two-dimensional distribution function p0�W;j� obtained from Monte Carlo simulation for a model ®lm of

homonuclear diatomic molecules of s� � 0:9 and the elongation d� � 0:4 adsorbed on the (100) plane of an f.c.c. crystal at

the temperature T� � 0:10 (from Ref. [462]).
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that have no counterpart in three dimensions at all (Section 3). Although experimental realizations for
this wealth of phenomena predicted by analytical considerations and veri®ed by Monte Carlo
simulations of corresponding models are still scarce, these phase transitions are of basic interest for
statistical mechanics and their application in surface science. Given the extraordinary progress in
preparation of well-characterized clean surfaces, and the similarly impressive progress in structure
analysis and microscopic observation of adsorbed layers, we are optimistic that many more
experimental realizations of such orderings and their phase transitions will be found in the future. Thus
we have described in the present article the necessary theoretical background and some illustrative
model calculations in detail, in the hope that this treatise will be understandable to the experimentalist,
and provide useful guidance and stimulation for a study of such phenomena in experiment. At this
point, we must emphasize most strongly that for simplicity the model calculations reviewed here
(Section 4) were examples just taken from the author's research groups. By no means would it have
been possible to provide an equally deep coverage of all the work that exists in the ®eld; we wish to
apologize to all colleagues whose work is mentioned here only brie¯y or even not at all Ð this neglect
should by no means be taken to imply that we rate the quality of their work less highly: but necessarily
a biased selection had to be made, and we clearly could provide a more focused presentation of our own
previous studies rather than providing a then necessarily rather incoherent review of the research from
other groups, that adresses many different questions, including some which are completely outside the
scope of this review (such as effects of surface heterogeneities and other types of quenched disorder,
adsorbate±induced surface reconstruction, collective dynamic phenomena associated with phase
transitions at surfaces, surface diffusion and growth phenomena, etc.).

While the lattice gas (Ising) model in its many variations plays for statistical mechanics a similar role
as the fruit¯y does for genetics, it must be emphasized that there are many phenomena expected in
adsorbed layers that are beyond the realm of a lattice gas description. For instance, only off-lattice
systems can show in the groundstate commensurate±incommensurate transitions via formation of
soliton lattices, and allow a test of the famous theories of defect-mediated melting in two dimensions.
We have reminded the reader on the basic theoretical concepts on both incommensurate phases and
related ideas (e.g. domain-wall meandering, etc.) and we have presented a brief summary of the
Kosterlitz±Thouless±Halperin±Nelson±Young theory of two dimensional melting as well (Section 3). It
must be recalled, however, that for a treatment of each of these problems in full depth a lengthy review
article of its own would have been required Ð and such reviews already exist and have been quoted in
the reference list. Rather the purpose of the present survey was to give a tutorial introduction and allow
the reader a substantially better understanding of the model studies described in Section 5. Note that the
square and rectangular surface lattices with rather weak corrugation potentials provide a fascinating
situation of con¯ict between the substrate potential symmetry and the tendency of the adsorbed layer to
form a triangular structure (as it would if the corrugation of the substrate were completely turned off).
In the model calculations reviewed here, both the corrugation strength and the mis®t between the lattice
spacing, that the adsorbate would take on a ¯at structureless substrate, and the lattice spacing of the
substrate lattice were used as control parameters. It was shown that a wealth of phase transitions does
occur, many of which provide examples for the general theoretical concepts discussed before, but some
phenomena may need new developments in the model building considered by analytical theory as well.
Again we hope that these studies will stimulate corresponding experimental work in the future,
although clearly the off-lattice simulations are much less complete than the work based on lattice gas
models.
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Finally we have allowed for two more complications Ð multilayer adsorption or wetting,
respectively, and effects of orientational order in adsorbed ®lms of diatomic molecules. The
corresponding subsections are particularly brief and show very few examples only Ð both topics
deserve detailed independent reviews, and are rapidly developing ®elds, and it was rather intended to
give a stimulating outlook on these ®elds, rather than provide a representative coverage.

Thus, despite the length of this article, only selected topics of the very broad ®eld could be covered!
But we do hope that the present emphasis on simulations guided by a tutorial overview of analytical
theory with occasional outlook on experiments makes this article readable and useful for a wide
audience.
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