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Abstract

The occurrence of structural variants during epitaxial growth is examined using two-dimensional symmetry. The modeling of
the materials includes equilibrium defect structures and reconstructions in addition to epitaxial strain and flaws. Specific results
are presented for single and multi-terrace systems and for miscut substrates. Analytical results for planes on which variants
nucleate in equal proportions are obtained simply, from two-dimensional symmetry arguments. These are used to discuss ways to
inhibit the growth of unwanted variants. � 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper concerns structural variants that form, in
proportions defined in part by symmetry, during the
epitaxial growth of materials on single-crystal sub-
strates. Epitaxial growth presents unique opportunities
for the synthesis of materials with scientific importance
and technical value. Accordingly, we seek an improved
understanding of the fundamental limits that constrain
epilayer structure. Here, and in what follows, the term
structural variant refers to distinct regions of an epi-
layer with different configurations that are related to
each other by a crystal symmetry operation of the
substrate such as rotation or reflection. A particular

Ž .example is GaAs grown on a Ge 110 substrate, where
Ž .two structural variants of GaAs grow on Ge 110 with

equal abundance, and differ only by occupying the two
sublattices with Ga and As interchanged. A second

Ž .example occurs when a f.c.c. 111 epilayer grows on
Ž .the 0001 surface of a substrate with hexagonal
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symmetry, so that two f.c.c. structural variants, respec-
tively, stacked ABCA... and ACBA... are created by
symmetry with equal probabilities. In the first example

Žthe structural variants are related by inversion among
.various alternative descriptions and in the second by

reflection as twins; other possible variant relationships
are discussed below. Here we develop a convenient
framework to describe the proportions of structural
variants for a given epilayer on any substrate crystal.

While variants offer behavior of theoretical interest
their practical role is largely as a nuisance to be avoided
where possible. Variants alter physical properties, cre-
ating recombination centers in semiconductors, for ex-
ample, and residual resistance in metals, while gener-
ally reducing crystalline coherence. Copper grown by
heteroepitaxy generally is broken into stacking domains
�1 �m in extent, whereas in a bulk crystal the pres-
ence of a single twin which creates regions with alter-
native stackings is a matter for note. This occurs in an
epilayer when the substrate lacks the template required
to select among variants, so that several variants nucle-
ate and grow. Then interest turns to properties such as
substrate miscut that break the symmetry and suppress
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unwanted variants. This paper employs symmetry to
find rules that guide future experiments in the choice
of substrates that select particular variants.

A general theory of interfaces has been developed
and applied to variants in epitaxial systems. This has
grown out of research starting with Van Tenderloo and

� �Amelinckx 1 , and subsequently several other groups
� � � �2�17 , but primarily Pond and colleagues 2�13 , in

� �research reviewed by Sutton and Balluffi 18 . The
Pond theory uses the symmetry of the Shubnikov groups
that describe the dichromatic complex of two interpen-
etrating bulk lattices to predict the occurrence of vari-

� �ants. As explained by Sutton and Baluffi 18 , this
approach finds precise applications to grain boundaries

� �and interfacial line defects in general 19,20 . It is
� �presented by Sutton and Baluffi 18 as describing epi-

taxial variants in all particular cases. Thus, the variant
populations are thought to follow from the symmetry
classifications of the bulk crystals, together with the
interface orientation. Limitations on the degree to
which this is true provides one of the topics addressed
in the present paper. A success of the theory is an
analytical result, in the case of GaAs on Ge discussed
above, that two GaAs variants occur equally not only

Ž . � 4on Ge 110 but also on all Ge hk0 surfaces for
arbitrary h and k.

Our contrary view is that heteroepitaxy requires the
growth of epilayer material on a specific surface and
that the structure of that surface then determines
epilayer properties such as variant distributions. The
relevant surface characteristics include first its symme-

Žtry, and others such as miscut and multiterrace struc-
.ture that remain in some degree amenable to symme-

Ž .try arguements, but also those such as misfit which
cause complication that remain to be accommodated.
As a particular example, GaAs does not grow with two

� 4 Ž .equivalent variants on Ge hk0 the Pond result .
Instead, the two variants grow with a spatially hetero-
geneous distribution that depends on the multi-level
character of the substrate, the vicinal miscut, and the
size of the variants relative to the substrate terrace
width. Specific questions of epitaxial structure thus,
intrude into the consequences of symmetry.

Here we begin from the observation that the surface
cuts irrevocably break the bulk symmetries of the sub-
strate and epilayer crystals. Only the symmetry of the
resulting truncated crystals is relevant to heteroepitaxy
and the occurrence of variants. By treating only the
remaining symmetry we gain the twin advantages of
greatly restricting the scope of the discussion from
three-dimensional to two-dimensional space groups,
and at the same time making direct contact with the
surface terrace structures that most influence het-
eroepitaxy. The resulting simplification allows the vari-
ants for all possible substrates and epilayers, given an
interface formed from planar terraces, to be enumer-

ated in Section 2 as a single table spanned by the
symmetries of the substrate and epilayer surfaces. In
Section 3 this same approach allows us to treat the
heterogeneity in variant distribution caused by multi-
level behavior, and to optimize variant selection, when
the crystal has a basis of more than one atom per
lattice point. The important effects of vicinal miscut as
a means to control and suppress variant populations
are treated in Section 4. A further advantage of re-
duced dimensionality in the variant problem is the
global perspective that emerges on the general extent
to which practical systems are affected by symmetry
factors. We emphasize that the results presented here
could equally be deduced from the relevant three-di-
mensional symmetries, after the two interface orienta-

Žtions are, in addition, specified in effect, the three-
dimensional symmetries and the surface cuts fix the

.surface symmetries . However, the 230 distinct space
groups in three-dimensions, and the multiplicity of cuts
for each of the substrate and epilayer, had evidently
created a barrier to any exploration of useful catalogs
of behavior.

It requires mention that the full epilayer crystal
structure remains necessary to specify the details of

� �boundaries among variants, and other defects 19,20 .
In connection with a comparison of two-dimensional

and three-dimensional descriptions we mention also
that the actual symmetry of an epilayer generally dif-
fers from that of the bulk. While the substrate is
normally of macroscopic dimensions, and usually un-
strained, the epilayer is a thin film with strains de-
termined by interactions with the much stiffer sub-
strate. It is a fact, for this thin film geometry, that
interfacial tractions from size misfit or differential con-
traction with the substrate lead to strain fields that are
uniform through the thickness of the epilayer. A simple

Ž .example is a cubic epilayer material grown 001 on a
square substrate surface lattice, which will normally
grow tetragonal with the c-axis perpendicular to the
interface. Thus, the three-dimensional symmetry of the
actual epilayer is different from that of the bulk mate-
rial. Therefore, it is essential to determine an epilayer
symmetry only after the surface cut and eventual strain
fields are fixed. Specifically, the relevant ‘bulk’ epilayer
symmetry is in part determined by the surface cut itself,
and is not available until the interface orientations are

Ž .fixed. A particular example is h.c.p. Dy grown 0001 on
Ž . � �h.c.p. Lu 0001 21 , for which the isotropic epitaxial

misfit causes the Dy to magnetize and actually become
orthorhombic, with three structural variants that corre-

Žspond to the three in-plane magnetization axes there
are six magnetic variants, two magnetic directions for

.each structural axis . The magnetized phase does not
Ž . � �occur when Dy is grown on h.c.p. Y 0001 22 , as it

originates entirely from epitaxial strain. In the present
Ž .treatment the Lu 0001 substrate is assigned a 3-m
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surface symmetry, and the orthorhombic epilayer a
2-mm surface symmetry, from which the existence of
three variants follows directly. Quick, intuitive and
accurate recognition of variant properties is of particu-
lar value in an experimental setting. This two-dimen-
sional approach to variant enumeration forms the core
of Section 2.

Given the surface symmetries, an elegant and readily
accessible basis for treating epitaxial variants is avail-
able, following the original discussion by Van Tender-

� �loo and Amelynckx 1 of the separate but similar
problem of variants that appear as localized precipi-
tates in bulk crystals. Here the same ideas are adapted
to the two-dimensional symmetries of epitaxial systems,
which requires only the simplest methods. Simplicity is
especially desirable for epitaxy because scores of prac-
tical cases arise in which, using the language of two-
dimensional symmetry employed here, the symmetry
analysis may be completed by inspection alone, and for
others only a small further framework of theory is
needed.

It is important to recognize that epitaxy is compli-
cated far beyond the point at which any exact struc-
tural symmetries remain. Heteroepitaxial growth begins
with nucleation, often far from equilibrium, and often
is complicated by competition among several mecha-

� �nisms 23�26 . Even in favorable cases it is hard to
predict beforehand what will grow from a particular
flux of materials supplied to a substrate material main-

� �tained under specified conditions 27 . Variants may be
seeded from the initial epilayer deposition on the sub-
strate crystal. During early phases, precursors of vari-
ants grow at distinct positions, both by accretion and by
kinetic competition, and the final configuration may
evolve during post-growth processing without further
deposition. Nucleation may occur at step edges, at

Ž .extrinsic or intrinsic activated flaws, or on the tem-
plate terraces. A number of chemically inequivalent
epitaxial overgrowths may form simultaneously. Growth
may take place where a substrate is deformed, defec-
tive or reconstructed, so that the local structure differs
from that of the truncated bulk crystal. Often, the
initial monolayer is pseudomorphic and the final struc-
ture forms by reconstruction after several layers of
growth. A metastable structure may persist for hun-

� �dreds of monolayers 28 . Kinetic factors limit the de-
gree to which an epilayer achieves equilibrium; glassy

� �films are an extreme case 29 . The epilayer structure
may change during annealing or cooling, or through
differential contraction or applied fields. The symmetry
of real materials is broken by surface reconstructions
and mobile surface defects. Only very thin epilayers
retain any possibility of remaining exactly commensu-
rate with the substrate surface periodicities; all others
are incommensurate, and this affects the behavior of
translational variants.

In the face of this complexity, a study of symmetry
constraints might at first appear unpromising. To the
contrary, symmetry survives the complexity, and certain
accurate statements may still be made about the way
symmetry constrains the growth of variants.

It captures the essence of epitaxy to organize the
subject matter with emphasis on low index planes and
the behavior of extended terraces. Almost all epitaxial
research employs low index planes of the substrate
material. These possess a high areal density of atomic
cells that tends to nucleate low index planes of the
epilayer, and are separated by correspondingly high
step edges. Accordingly, the symmetry of variants war-
rants interest largely for low index surfaces as, indeed,
is true of epitaxy more generally. The results often
differ for single terrace, multi-level and vicinal sur-
faces, and these are the topics of Sections 2�4, respec-
tively. In Section 2, the variant populations are
enumerated for all possible symmetries of the substrate
and epilayer terraces. Section 3 treats multilevel behav-
ior with particular regard to the opportunities it pre-
sents for suppressing subsets of variants. Section 4 is
focused on the way miscut can be employed to enhance
the population of any selected variant. The treatment
in Sections 2�4 concerns idealized models that neglect
the complications of real systems, detailed above. Sec-
tion 5 then considers the degree to which the results
are sensitive to such physical factors as thermally acti-
vated surface structure, lattice strain, and incommensu-
rability between the substrate and epilayer structures.
Section 6 suggests how the results of the paper may be
employed in practice.

2. Symmetry and the variants on a single terrace

This section treats the way symmetry determines
what variants form on a given terrace. Section 2.1
defines the lattices of the substrate and epilayer crys-
tals. Section 2.2 defines substrate symmetry for ideal-
ized materials, and Section 2.3 treats epilayer symme-
try. Variant enumeration and global symmetry are the
topics of Section 2.4 and Section 2.5 summarizes the
results. The accommodation of thermal defects and
structural flaws within this framework is the topic of
Section 5.

2.1. Substrate and epilayer crystals

The simplest substrate consists of a crystal that is
terminated by an indefinitely extended terrace un-
broken by step edges. Possible thermal or athermal
flaws in this terrace are treated in Section 5. The
unperturbed Bravais crystal lattice of the substrate is

s s s � �spanned by basis vectors a , a , a , that define 30 the1 2 3
reciprocal lattice vectors bs , bs , bs , by bs �2� as �1 2 3 1 2
as ��, etc., with � the volume of the unit cell. The3
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substrate terrace treated here is defined by the recipro-
cal lattice vector

Ž . s s s Ž .g h,k,l �hb �kb � lb 1s 1 2 3

with h, k, l, integers with common factors removed. The
Ž .distance between h,k,l planes is

Ž . � � Ž .d h,k,l �2��g 2s

In more complex crystals the several atoms per unit
cell require, in addition, position vectors � to locates
them relative to the Bravais lattice point.

The Bravais surface net of the substrate is defined by
new basis vectors as , as , that contain integral multiples2 3
of the lattice basis vectors, together with an interplanar
vector as. The corresponding reciprocal lattice vectors1
are bs , bs , bs . Here, italic letters are employed for the1 2 3
vectors related to a particular choice of surface plane
Ž . s s sg h,k,l �b . The surface net a , a , is not defineds 1 2 3

uniquely owing to the multiplicity of ways it can be
specified. as , as may be selected for shortness and2 3
angular separation, and similar criteria employed in the
choice of as.1

An epilayer is similarly specified by bulk basis vec-
tors ae, ae , ae . Ordinarily its surface normal along g is1 2 3 e

Ž .parallel to g h, k, l but the two have differing lengthss
that correspond to the different plane spacings in the
epilayer and substrate. The basis vectors of the surface
net, ae , ae , contain multiples of the bulk basis vectors2 3
ae, ae , ae , as also does the third vector of the set, ae.1 2 3 1
Epitaxy is usually determined by the fit between ae , ae ,2 3
and one or both of as , as .2 3

The variants on which this paper is focussed all have
basis vectors equivalent to ae, ae , ae , such that the1 2 3
structure is merely rotated, mirrored or translated from
one variant to the next. They all have equivalent
chemical relationships to the substrate. These matters
are quantified below. Variants are mutually distinguish-
able, as their atomic positionings differ, and detectable
interruptions of crystal structure occur at boundaries

Ž � �.where two variants meet see Sutton and Balluffi 18 ,
as illustrated in Fig. 1. Two matters require mention
here. First, the epilayer surface net ae , ae , normally2 3
differs not only from the substrate net but also from
that of the unstrained bulk epilayer material. The
variants are thus strained, which may change their
symmetry. Thick films also are incommensurate with
the substrate, which can make translational variants
unrecognizable. This point is discussed further in Sec-
tion 5 after the symmetry results are established. Sec-
ond, typical substrates do not have flat surfaces but
instead comprise terraces, spanned by as , as , and2 3
connected by out-of-plane vectors. Fig. 1a,b shows the
two limits in which the typical variant size D is respec-
tively much less than and much greater than the ter-

Ž .Fig. 1. Variant structures. In a the variants are large and overlap
onto several terraces, as indicated by the broken lines spaced by L

Ž .that mark step edges. In b the variants are smaller than the
terraces. For clarity, the steps shown are unrealistically regular.

race length L. In effect the former case with D�L
provides the subject matter of this section, as each
variant is determined by a single terrace. The transla-
tion vectors as , ae, between terraces generally differ1 1
for the substrate and the epilayer, which relates to the

Žmatter of translational variants mentioned above Sec-
.tion 5 . Translations among terraces may contain posi-

tion vectors, � , in addition to basis vectors like ae,s 1
with consequences for interfacial chemistry that are
discussed in Sections 3 and 5.

2.2. Symmetry of an ideal single-terrace substrate

Suppose that the substrate is cut from an infinite,
perfect crystal that has translational invariance from
cell to cell, as defined by the basis vectors as , as , as

1 2 3
introduced above, and also possesses symmetry about
sites in the unit cell. The symmetry is a catalog that
includes rotations, reflections, inversions in addition to
operations such as glide planes and screw axes that

� �relate to the structure of the basis 31,32 . The sub-
strate we consider is semi-infinite, with the free surface
cut exactly along a crystal plane, and all atoms at exact
lattice positions. Therefore, translational invariance in
the plane is retained, with basis vectors as , as . Whether2 3
or not any point symmetry remains about surface sites

Ž .depends on the particular crystal and the plane h,k,l .
The 10 alternative point symmetries available to the

substrate are the two-dimensional crystallographic point
� �groups 32 . They contain all symmetries of the infinite

crystal that are not destroyed by the surface cut. The
symmetry operations include only those rotations with
axes parallel to the surface normal, and mirror planes
with normals that lie in the plane of the surface.
Specifically, the first five comprise the rotations of
order 1, 2, 3, 4 and 6, indicated conventionally by the
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relevant integer, and the remainder are the same rota-
tions but with a mirror, written m, 2mm, 3m, 4mm and
6mm. Rotations and mirrors act together. For example,
a twofold rotation with a mirror creates two mirror
planes, hence the notation 2mm. Successive terraces of
a crystal possess the same symmetry, but a multi-atom
basis can cause successive terraces to differ in struc-
ture.

Crystals with a multi-atom basis may have screw axes
or glide planes. If the surface plane cuts the translation
vector of the screw or glide the symmetry operation is
broken. Screws and glides are, therefore, ignored, ex-
cept a glide plane with its translation parallel to the
surface. The modified treatment for multilevel surfaces
is explained in Section 3.

In addition to these overt symmetries, the substrate
material retains latent symmetries that constrain its
more general behavior, as described in Section 5.

2.3. Symmetry of an ideal epilayer

The symmetry description of an epilayer required for
an enumeration of epitaxial variants is analogous to
that given above for the substrate symmetry, specifi-
cally the 10 two-dimensional point groups, the transla-
tional symmetry, and any glide plane in the surface
plane. Owing to a subtlety concerning translational
variants, explained in Appendix A, an epilayer screw
axis oriented normal to the interface is to be treated
for variant enumeration on a single terrace as a simple
rotation axis, and a glide plane perpendicular to the
surface is treated as a simple mirror. There are addi-
tional factors which are now explained with the help of
illustrative examples.

2.3.1. Three-dimensional structure
A slab-like epilayer can display certain additional

symmetry elements related to its three-dimensional
structure that are not contained in the present two-
dimensional description, but these play no part in vari-
ant enumeration and are detailed in Appendix A. The
epilayer and substrate symmetries treated here never-
theless are two-dimensional symmetries of the three-
dimensional material, not of the surface planes alone,
because interatomic forces can modify chemical equiva-

Ž .lence through multiple atomic planes. An f.c.c. 111
Ž .surface is threefold with a mirror 3m even though the

surface layer of the truncated bulk has close packed
Ž .sites with 6mm symmetry. The observed occurrence of

variants can monitor the degree to which deeper layers
do, in fact, influence variant energies. For example,

Ž .strong effects occur for Si 001 , for which the bulk-
terminated surface is square, but this symmetry is
broken by bonding from below which leaves the actual

Ž .surface twofold with a mirror 2mm , and which in turn

� � � �causes ‘dimer row’ reconstructions 33 along 110 and
� �110 on successive terraces.

2.3.2. Strain
When an epilayer forms on the substrate, both mate-

rials may be modified by the interaction, but most
commonly the epilayer, and in particular its symmetry
may be changed. This happens because the in-plane
spacing of epilayer atoms depends on the interaction
with the substrate during growth. The resulting strains
extend through the epilayer as discussed in Section 5.
The epitaxial strain can influence the epilayer symme-
try directly, as in the breaking of cubic symmetry, and
also indirectly by creating a different phase which has
its own symmetry; conversely the epilayer can change
the substrate. These processes warrant clarification by
specific examples. In Section 1 the case of phase change

Ž .is illustrated by helimagnetic h.c.p. Dy 0001 grown on
Ž . � �h.c.p. Lu 0001 21 , where the Dy magnetizes to

Žbecome orthorhombic and creates three structural six
.magnetic variants. The strain-induced transitions thus,

break the symmetry both of the unstrained epilayer
and of the epitaxial strain. As the example of Dy on Lu
makes clear, the epilayer symmetry relevant to variant
enumeration is that of the material as it exists in the
actual variant. A final complication is that epitaxial
strain may take the epilayer into a two-phase region of
the phase diagram, where alternative structures neces-
sarily coexist in thermal equilibrium, but as this neces-
sarily deals with more than one epilayer crystal struc-
ture it lies outside the scope of the present discussion.

2.3.3. Reconstructions
A further example of modified epitaxial symmetry

occurs when either or both of the substrate and epi-
layer surfaces reconstruct. Also, interfacial reconstruc-
tions may be induced by their mutual interaction. Of
many examples in which epilayers modify the substrate

� � � �surface we mention that alkali 34 and oxygen 35
monolayers induce ‘missing row’ reconstructions on
Ž .011 surfaces of f.c.c. metals such as Cu, Ni, Pt, with
complementary structure of the overlayers. Recon-
structions are treated in Section 5.1. The conclusion
there is that substrate reconstructions are to be ig-
nored because, on average, they occur equally in all
symmetry-related orientations of the substrate con-

Žtained in the normal enumeration of variants see
.Section 2.4 . When an epilayer is deformed by a recon-

struction of the interface with the substrate it would
certainly be consistent to employ the epilayer symmetry

Žas deformed since there are distinct interfacial struc-
.tures , and to recognize interfacial variants. We prefer

Ž .instead to distinguish between 1 variants as distinct
Ž .bulk structures and 2 reconstructions as distinct struc-

tures confined to the interface. With this definition all
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reconstructions are ignored in the assignment of sub-
strate and epilayer symmetry.

2.3.4. Summary of symmetries
Variants are required to be chemically equivalent in

their internal structures and their interactions with the
substrate. The definition of epilayer symmetry pertains
to the uniformly strained state, specifically of the
three-dimensional structure near the interface in the
case of inhomogeneous material, but excludes defor-
mations confined to the interface.

2.4. Enumeration of �ariants for a single terrace

Here we treat successively the rotation, mirror and
translational symmetries permitted to substrates and
epilayers.

2.4.1. Rotation axes
The five rotational symmetries identified above are

labeled by the number of equivalent orientations as 1,
2, 3, 4 and 6. Under the action of these rotations, a line
drawn on a surface with a n-fold rotation axis gener-
ates n equivalent lines at angles of 2� p�n, with p
integral. Similarly, when the epilayer in one of its
orientations replaces the line there are generated n
equivalent epilayer configurations on a surface with an
n-fold rotational axis. These need not all give distin-
guishable crystal structures. If the substrate has a

Ž .threefold axis Fig. 2 the epilayer occurs in three
orientations; but if the epilayer also has a threefold
axis the three arrangements are identical and there is
only one variant. In short, the rule is that each new

Žvariant is the result of a symmetry operation or combi-

.nation of operations present in the substrate that is
� �not present in the epilayer symmetry 1 .

2.4.2. Mirrors
The remaining five point symmetries available to

substrates are obtained by combining each of the rota-
tions discussed above with a mirror that contains the
rotation axis. The mirror increases the number of
symmetry-equivalent configurations by a factor of two,
and so the number of variants is increased by a factor
of two. The variants then occur in pairs related by
reflection in the substrate mirrors. If the epilayer pos-
sesses the same mirror, however, the new atomic ar-
rangements of the epilayer that are introduced by the
substrate mirror no longer remain distinguishable. The
factor 2 is lost and the number of variants is unchanged
by the mirrors. The rule once more is that only opera-
tions introduced by the substrate that are absent from
the epilayer can create new variants.

Table 1 summarizes the number of variants for all
possible symmetries of the substrate and epilayer ter-
races. The maximum number of variants is 12 and the
least is, of course, 1. It is an attribute of the two-dimen-
sional description of variants employed here that the
results for all cases can be presented so compactly.

Note, as in Fig. 3, that an epilayer mirror can cancel
a substrate mirror only if the two mirrors are perfectly
parallel. Two examples are cited here to make this
requirement concrete. First, in the growth of close

� �packed monolayers of rare gases 36,37 on certain
close packed substrates, it is found that the close
packed directions in the substrate and epilayer planes
differ by a rotation angle of several degrees. As the
substrate and epilayer mirrors are thus misaligned there

Ž . Ž .Fig. 2. a An epilayer that lacks symmetry e.g. grey triangles , on a substrate with a threefold axis, occurs in three distinguishable variants; but
Ž . Ž .when in b the epilayer also possesses a threefold axis there is only one distinguishable configuration bottom . The unit cell and its threefold

Ž .axes are shown in a .
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Table 1
The number of variants formed in epitaxial growth, listed by symmetry of the substrate, S, and epilayer, E, and with the global symmetry given in

aparentheses

E S 1 m 2 2 mm 3 3 m 4 4 mm 6 6 mm

1 1 2 2 4 3 6 4 8 6 12
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .1 m 2 2mm 3 3m 4 4mm 6 6mm

m 1 1 2 2 3 3 4 4 6 6
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .m m 2mm 2mm 3m 3m 4mm 4mm 6mm 6mm

2 1 2 1 2 3 6 2 4 3 6
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .2 2mm 2 2mm 6 6mm 4 4mm 6 6mm

2 mm 1 1 1 1 3 3 2 2 3 3
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .2mm 2mm 2mm 2mm 6mm 6mm 4mm 4mm 6mm 6mm

3 1 2 2 4 1 2 4 8 2 4
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .3 3m 6 6mm 3 3m 12 12mm 6 6mm

3 m 1 1 2 2 1 1 4 4 2 2
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .3m 3m 6mm 6mm 3m 3m 12mm 12mm 6mm 6mm

4 1 2 1 2 3 6 1 2 3 6
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .4 4mm 4 4mm 12 12mm 4 4mm 12 12mm

4 mm 1 1 1 1 3 3 1 1 3 3
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .4mm 4mm 4mm 4mm 12mm 12mm 4mm 4mm 12mm 12mm

6 1 2 1 2 1 2 2 4 1 2
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .6 6mm 6 6mm 6 6mm 12 12mm 6 6mm

6 mm 1 1 1 1 1 1 2 2 1 1
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .6mm 6mm 6mm 6mm 6mm 6mm 12mm 12mm 6mm 6mm

a The results are valid for substrates that are Bravais lattices, and for single terraces of any other substrates. For multilevel surfaces, the results
hold provided that screw axes normal to the surface are treated as simple rotation axes, and glide planes that contain the surface normal are
treated as simple mirrors. For the 25 cases in which both the substrate and epilayer symmetries include mirrors it has been assumed that these
mirrors are parallel. If they are not parallel the number of variants is doubled, but the global symmetry remains unchanged. Screw axes can alter
the global symmetry of an entire epilayer as explained in Section 3.5.

result two variants; these correspond to opposite angu-
Ž .lar displacements of the Ar. Similarly, rare earth 1102

Ž .epilayers grow on Nb 211 with the normal to the
� �epitaxial plane reoriented by a ‘tuned tilt’ 38 of a few

Ž .degrees from the Nb 211 normal. Two tilted variants
then become detectable, rotated from each other by an
in-plane angle �. In the absence of this tilt, the Nb
Ž . Ž .211 and rare earth 1102 have parallel mirror planes,
the two atomic arrangements are identical and a single
variant is the result. Thus, exactly parallel mirrors are
required to eliminate a possible new variant.

2.4.3. Global symmetry
It is convenient at this point to define a global

symmetry of the �ariants that is characteristic of an
ensemble of variants grown on a surface. Questions of
probe size then enter the discussion of observed
symmetry. A probe restricted to one variant generally
detects a different symmetry from a probe that samples
a statistical distribution of variants. The different vari-
ants, being equivalent on each terrace must, on aver-
age, form in equal proportions. Therefore, the global
symmetry is the superposition of the symmetries of all

Fig. 3. When the substrate and epilayer each contain a mirror, as in the examples shown, only one variant occurs when the mirrors are exactly
Ž . Ž . Ž .parallel, as in a ; otherwise there are two distinguishable variants b . Mirrors of the unit cell are shown by thick lines in a .
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the variants. Since the variants contain all symmetries
of the substrate that are lacking from the epilayer
crystal, the global symmetry is, in short, the union of
the epilayer and substrate symmetries. This is the ex-
pected symmetry for the diffraction pattern of all vari-
ants on a terrace. The global symmetries for given
epilayer and substrate symmetries are represented in
Table 1. In Section 3 it is shown that, in the special
case where the atomic basis introduces a screw axis

Ž .parallel to g h,k,l , the global symmetry includes alsos
the rotational order of that axis.

2.4.4. Translations
Given a substrate with q equivalent nucleation sites

for the epilayer there are q translational variants for
each of the point variants identified in Table 1. For
example, scanning tunneling microscopy has been em-

� �ployed 39 to examine the growth of oxygen monolay-
Ž .ers on W 110 , including the eight variants of the

Ž .2�2 phase, and the observable boundaries, that oc-
cur near 75% coverage. In the growth of the perovskite

Ž .BaTiO 100 on Mg using a first layer of rutile TiO to3 2
� �satisfy interfacial electrostatic requirements 40 , the

resulting perovskite similarly exists in four translational
variants. To the degree that the substrate translational
and other symmetries are independent of each other,
the total of variants is obtained as the product of the q
translationals and the result from point symmetries in
Table 1.

Note that the separation into translational and other
symmetries of variant is not always trivial. This is
illustrated by the case of a hexagonal substrate in
which, say, successive layers occupy A-type sites of a
hexagonal net, with B and C sites unoccupied. If the
epilayer also occupies only A sites there are no transla-
tional variants and Table 1 gives the number of vari-
ants. If, instead, the epilayer occupies hollow sites, the
B and C sites are degenerate, and have threefold
symmetry with a mirror. An epilayer whose only
symmetry is to share the substrate mirror then has
three rotational variants for each type of site. Never-
theless, since the two sites differ by a rotation of � in
addition to a displacement, the six variants can still be
distinguished by orientation alone and regarded, if so
desired, as purely rotational variants, ignoring the cou-
pled translation. For a twofold epilayer with the same
mirror, however, the two types of site can no longer be
identified by orientation, and there remain two transla-
tional variants for each of three orientations. An epi-
layer which is threefold with a mirror, on the other
hand, occurs rotated by � at the two available sites,
and the variants are equally translational and rotatio-
nal in character. These examples are clarified in Fig. 4.
For substrates that are h.c.p. or f.c.c., rather than
hexagonal, the B and C sites are no longer degenerate
owing to the stacking, and translational variants are

Fig. 4. Translational variants occupying threefold sites of a hexago-
nal substrate. The variants are indicated by symmetry symbols in the
sites they occupy. On the left are six variants whose only point
symmetry is a mirror parallel to the substrate mirror; on the right are
the six variants with a twofold axis and the same mirror; in the
middle are shown the two variants with a threefold axis and a mirror.

Ž .Only in the second case right do variants differ only by a transla-
tion.

thereby eliminated. The discussion neglects the further
possibility that a higher-order transition to off-center
sites creates added translations. We conclude that trans-
lations can occur with peculiarities that require exami-
nation case by case. This is reinforced in Section 5 by
consideration of the extent to which translations re-
main detectable in the face of strain and incommensu-
rability.

2.5. Summary of results for a terrace

The variants of an epitaxial structure that appear by
point symmetry on a single terrace each reflect a rota-
tional or mirror symmetry of the terrace that is not
present in the epilayer symmetry. To cancel from the
enumeration of variants, terrace and epilayer mirrors
must be parallel within the resolution of the detection
equipment. The multiplicity of translational variants,
when detectable and independent of other symmetry
operations, multiplies the number from point symme-
tries to give the total of observable variants. A principal
point here is that the variants occur on a single terrace
with equal probabilities, from symmetry. Multilevel sur-
faces and vicinal miscut offer two means to interfere
with the otherwise equal populations, and these are the
topics of Sections 3 and 4. In connection with variant
control when growing compounds, even on a single
terrace, we note that specific variants can often be
eliminated by admitting the epilayer chemicals in a
selected order, so that surface sites are saturated with a
single atomic species.

3. Variants on multi-level surfaces

Surfaces normally comprise terraces at different lev-
els that terminate at step edges. Height differences of
this type evolve thermally over sufficiently large areas,
leaving the single terrace of Section 2 a special case.
The proportions in which variants occur may then
change because step edges and successive terraces gen-
erally nucleate variants differently, and the single ter-
race behavior is lost. Moreover, variant distributions
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become inhomogeneous, linked to the particular ter-
race type underlying the region. Unfortunately only a
limited opportunity for manipulating variant popula-
tions arises from this selectivity. The behaviors differ
for crystals with a single atom occupying each lattice
point, which for convenience we call Bravais crystals,
and crystals with a basis of two or more atoms. The
cases are treated successively in what follows.

3.1. Multi-le�el Bra�ais substrate

To help define terms, Fig. 5 gives simplified sketches
of multilevel Bravais substrates, some with epilayers.
Fig. 5a shows a rough multilevel surface, with unevenly
spaced steps of random sign that create a distribution
of terrace heights. The surface in Fig. 5b lacks rough-
ness but has a gradient and is termed miscut or vicinal,
the topic of Section 4. The effects of multilevel struc-
ture on variants are indicated in Fig. 5c,d. For chemical
reasons nucleation generally occurs faster at steps than
on terraces. Each step nucleates particular variants
preferentially, whereas terraces nucleate all variants
equally. Thus, in Fig. 5c,d, larger domains grow at step
edges, downhill steps are shown nucleating variant 1
preferentially, while uphill steps correspondingly nucle-
ate variant 2. For the miscut surface shown in Fig. 5c
this results in a preponderance of variant 1 that is the
focus of interest in Section 4. What follows concerns
the behavior of variants on the multilevel surface with
no average miscut, shown in Fig. 5d.

The terraces of a Bravais crystal substrate with sur-
Ž .face normal g h,k,l have identical atomic structuress

spanned by the in-plane basis vectors ae , ae , and2 3
connect to other terrace by means of the third basis
vector as. For the low-index planes this is a near-1
neighbor vector with a substantial component normal
to the surface. For any given step edge, symmetry
operations of the terrace must generate other step
orientations equivalent to the first; the step distribution
mirrors the terrace symmetry because step edges lie
along atomic rows. For each category of step, equiva-
lent steps occur with equal probability on a surface,
which remains planar on average, and lacks azimuthal
bias.

Although variants nucleate preferentially on steps
Ž .Fig. 5d , the conformity of the step orientations and
variants to the terrace symmetry ensures that all point
symmetries of terrace-nucleated variants must be nu-
cleated at the steps, and with equal probabilities for a
planar unbiassed surface. For each category of step we
conclude finally that the steps that surround a terrace
must, on average, contribute point symmetries of vari-

Ž .ants on the terrace with the same equal distribution
as from terrace nucleation itself. In short, the results of
Table 1 for �ariant nucleation on the single terrace re-

Ž . Ž .Fig. 5. The surface in a is rough while that in b remains miscut
but lacks roughness, and so retains translational invariance. For the

Ž .smoothly miscut surface in c the step edges nucleate the preferred
variant, labeled 1, and this variant competes with nucleation of

Ž .variants 1�4 on the terraces. In d , the opposing steps caused by
roughness nucleate variant 2, and the excess nucleation of the
preferred variant, 1, from miscut competes with combined nucleation
from terraces and from roughness.

main �alid for the multi-le�el surface for this special case
of a Bravais crystal.

Conversely, for Bravais crystals we conclude that
multilevel effects on surfaces that lack azimuthal bias
offer no opportunity to manipulate variant populations.

3.2. Multi-le�el substrates with a basis

On a crystal with a multi-atom basis, the surface
species on successive terraces may be displaced and
chemically distinct. The results of Section 2.4 correctly
describe the variants that grow on any specific terrace.
However, the differing chemistries and geometries of
terraces may create variants as a succession of distinct
single-terrace behaviors spread over the substrate sur-
face. Relevant ideas are sketched in Fig. 6 for a sub-
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Ž .Fig. 6. Illustrative states of a multilevel surface with a basis. a
shows a surface similar to Fig. 2a but with successive terraces made

Ž .of an alternative species. The same surface is shown in b but with
the entire basis removed at doubled step edges so that Bravais-like

Ž .behavior results. In c , one species is preferred but not uniquely
present at the surface.

strate with two types of atom. Roughness and miscut
can both reveal two distinct types of terrace, as illus-
trated in Fig. 6a. Bravais-like behavior can be recov-
ered if, for chemical reasons, successive terraces differ
by an entire basis unit, as shown in Fig. 6b. In most
cases, however, thermal processes may break the basis
in ways that vary from one terrace to the next. There-

Ž .fore, the variant distribution Fig. 6a becomes a super-
position of two chemically distinct forms. More gener-

Ž .ally Fig. 6c the surface structure and corresponding
variant selection are still more heterogeneous.

Ž .As a real example, when GaAs grows on a Ge 001
terrace, after saturating with one component, say As, a
single variant of GaAs occurs with As on levels 2n�1

Ž .above the Ge terrace at level 0 and Ga on levels
2n�2, n�0, 1, 2,...,. On the next terrace up or down
of the Ge substrate, the As still occurs first and so
occupies levels 2n�2, instead of Ga. Thus, the GaAs
variant that forms there has the Ga and As atomic
positions reversed from the variant on the first terrace.
In this way successive terraces of substrates with a basis
may nucleate distinct variants. Several, rather than just
one, variant may occur on each terrace. When an

Ž .epilayer lacking symmetry is grown on Ge 001 the

2mm terrace symmetry creates four variants interre-
Ž .lated by the two mirrors Table 1 . On the next terrace

� �the structure is rotated through ��2 by the 001 screw
axis, and the four variants take entirely new equivalent
orientations, making eight variants in all. This happens
also when the substrate contains more than one atomic
species, for example replacing Ge with GaAs. The
overall result even for Ge is that the variant population
varies with location over the substrate surface, depend-
ing on the underlying terrace. This heterogeneity is, of
course, greatest when the variants are smaller than a

Ž .terrace width Fig. 1 .
We seek conditions under which particular variants

may be suppressed. In two cases symmetry reveals
when successive planes of a multilevel substrate with a
basis have identical chemical activity, so that the de-
sired specificity is clearly absent. First, successive planes
can all be chemically identical only if they each contain
whole formula units of the material. Second, in a mate-
rial made from a single chemical species, but with more
than one atom per unit cell, it is possible for the
chemical equivalence of successive planes to be assured
by the symmetry of the atomic basis. It is a fact that
neither of these conditions is widely satisfied for com-
pounds in general. Common structures like fluorite or
perovskite with three or more atoms per formula unit
do not possess even a single crystal plane that contains

� Ž .exact formula units although, for example, 111 planes
�of Cu Au do . Also, materials with a single atomic3

species in a structure with more than two sites per cell
are rare. As a practical matter this has focused our
attention on ‘diatomic’ crystals, with two atoms per cell.
These contain many planes with whole formula units.
They include much-studied lattices such as rocksalt,
zincblende, and CsCl structures, with two dissimilar
atoms as the basis, and diamond and h.c.p., which
contain two identical atoms in positions related by
symmetry operations. In what follows we treat crystals
with two atoms per cell. The case of sapphire provides
an example of more complex substrates which is out-
lined in Section 4.4 after the beneficial effects of sub-
strate miscut are introduced.

3.3. Formula units of two chemically distinct atoms

Consider lattices with formula AB that contain just
two inequivalent species A and B equally. Surface
orientations of lattices with a basis are defined by
planes of the underlying Bravais lattice. For crystals
with formula AB, any given plane through an A atom
passes through other A atoms located by as , as , and2 3
other spaced planes contain all remaining A atoms.

Ž .The planes may: 1 contain B atoms also, in which
case they contain all B atoms and the planes are all

Ž .populated with the formula unit AB; or else 2 the first
set of planes contains only A atoms and the A planes
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are interleaved with B planes at spacings determined
by the plane orientation and the basis vector. Rough-
ness in the latter case exposes chemically heteroge-
neous surfaces, which can favor particular variants. To
proceed we identify inactive surfaces occupied equally
by A and B atoms.

Suppose that an A atom lies at the origin and that an
associated B atom lies at

s s s Ž .��x a �x a �x a 31 1 2 2 3 3

with the as basis vectors of the lattice and the xi i
Ž .fractional coordinates in the unit cell. Successive A
planes of a specific orientation lie perpendicular to
Ž . Ž . Ž .g h,k,l , spaced by d�2���g h,k,l � see Section 2.1 .

Consequently, when the projection of � on g is nd, so
that

Ž .g ���2�n , n , integral 4

the B atom must lie in a plane of A atoms n planes
removed from the origin. Then all planes contain A
and B atoms equally. Otherwise the A and B atoms lie
in separate planes and neither type contains formula
units. These results are now illustrated by application
to f.c.c. and hexagonal materials.

3.3.1. Face centered cubic
This category includes zincblende and rocksalt crys-

� � Ž .tals 32,33 . The scalar product in Eq. 4 can be evalu-
ated using the fact that the body centered cubic re-
ciprocal lattice occupies all points h, k, l, with h,k,l,
either all odd or all even, of a simple cubic lattice of
spacing 2��a along cartesian coordinates with unit
vectors i, j, k. With respect to these same coordinates
the position vectors that locate the B atom relative to
the A atom for rocksalt and zincblende, respectively,
are:

� � � � Ž .� �a i� j�k �2; � �a i� j�k �4 5R Z

The scalar product of � with

Ž . � � Ž .g h,k,l �2� hi�kj� lk �a 6s

gives: for rocksalt: h�k� l�2n;

Ž .for zincblende: h�k� l�4n 7

in which the n are integers and h, k, l are all even or all
odd. These values of g give the correct spacings of
planes only for h, k, l from which all common factors
are removed, so that possible solutions with all even
coefficients must be designated in reduced form. The
resulting planes that contain formula units are:

3.3.1.1. Rocksalt. All planes with either two of h, k, l
odd and one even, or with one odd and two even;

Ž . Ž . Ž . Ž .examples are 100 , 110 , 211 but not 111 .
3.3.1.2. Zincblende. All planes with two of h, k, l odd

Ž . Ž . Ž .and one even; examples are 110 , 211 , but not 100
Ž .or 111 .

3.3.2. Cesium chloride
With its simple cubic Bravais lattice, CsCl has the

same basis as NaCl, and h,k,l are confined to the same
Ž .constraint as rocksalt, Eq. 7 . Hence, if one of h, k, l, is

even there is a single type of plane, and it contains
Ž . Ž .whole formula units; examples are 110 , 211 . Other-

Ž . Ž .wise there are two types of plane, e.g. for 100 , 111 .

3.3.3. Hexagonal
We analyze the case of hexagonal lattices for the

� �special case of the WC structure 32,33 , which has the
Ž .same basis as hexagonal close packed see Section 3.4

except that the two atoms of the basis are now differ-
ent species. Thus,

� s s s ��� 4a �2a �3a �6;1 2 3 Ž .8s s sŽ .g h,k,l �hb �kb �Ibs 1 2 3

and
Ž .g ��3.4.�2�3h�1�3k�1�2l�n 9

with n an integer. This is possible only if l is an even
integer and 2h�k�3n� with n� an integer. Examples

Ž . Ž . Ž .are 1120 and 1122 but not 1100 .
Ž .For the conditions given above, the substrate h, k, l

planes contain complete formula units and create iden-
tical rotational and mirror variants. The variants are
displaced by interplanar translations as , and whether1
this creates distinct translational variants or, alterna-
tively, a single strained variant, is a matter to be

Ž .decided case by case Section 5.4 . Results for various
crystals are summarized in Section 4.5. Note that the
criterion that planes contain whole formula units en-
sures identical planes only for diatomic crystals.

3.4. Diatomic crystals of a single chemical species

Substrate crystals with a basis AA� of two chemically
identical atoms separated by a position vector � also
obey the results of Section 3.3, with two possible vari-
ants associated with the two sites. In addition, there are
orientations in which the A and A� atoms occupy
separate, interleaved, planes and behave equivalently
owing to a symmetry of the basis. Of interest are glide

� �planes and screw axes 32 that pertain to the basis
Žitself, in crystal structures termed non-symmorphic as

opposed to symmorphic crystals that lack these symme-
.try elements .
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Fig. 7. The flat surfaces A and A� are displaced images mirrored in
the glide plane G, so that the two normals n and n� are obtained
from each other by reversing the component normal to G. When the
two normals lie in the glide plane, A and A� are successive planes of
the same orientation.

3.4.1. Glide plane
The A� sites are obtained when the A atoms undergo

a given translation and are then reflected in a ‘glide
plane’. Surface planes are defined by the underlying
Bravais lattice. Suppose initially that a given plane,
normal n, is all A. Given the glide symmetry, there
exists an equivalent plane, normal n�, containing all A�,
which has the same surface normal with the component

Žperpendicular to the glide plane G reversed i.e. the
.plane is mirrored in the glide plane , as sketched in Fig.

7. From the mirror symmetry, any variant on the A
plane must nucleate with the same probability as the
displaced and mirrored variant does on the A� plane.
When the surface normals are confined to the glide
plane the A and A� planes are parallel and constitute
successive terraces of a multi-terrace surface in the
chosen orientation. Then variants related by the glide
operation must nucleate equivalently on the successive
terraces, and in identical proportions. When instead
each plane contains A and A� atoms equally, the same
result holds between the two variants.

This glide-related equivalence persists, site by site,
even when translational symmetry is broken, and the
chemical activity of any site depends on its location
Ž .e.g. relative to a step edge . The mirror gives A and A�
planes equivalent, mirrored step edges, so that the
plane and its partner under the glide operation retain
equivalent nucleation characteristics, site by site, for
the glide-related variants. In the case of two parallel
planes, with normals in the glide plane, which are thus
successive terraces for this orientation, the glide-
related variants remain in equal proportions on succes-
sive terraces and step edges. This holds for all crystal
planes with normals in glide planes. The same is true
for A and A� sites contained in a single plane. All
planes with normals in a glide plane lack selectivity
among variants, even when the activity varies with
position on the terrace.

As one application we cite GaAs on Ge, whose
� 4 ² :diamond lattice has 001 glide planes with 110 �4

� �glide translations 32 . This glide operation transforms
Žthe two possible GaAs variants with reversed Ga and

.As sites one into the other. The preceding results
show that when successive terraces are related by a
glide operation, variants related by the same glide
nucleate equivalently on the two terraces. In the pre-

� 4sent example, all hk0 planes of arbitrary h and k have
Ž .normals in 001 and, therefore, satisfy this require-

ment. Our discussion thus reproduces the analytical
Pond result mentioned in the Introduction. Further
planes not found in the Pond work are identified below.
More important still is the use of the results for vicinal
surfaces, discussed in Section 4.

� 4In the h.c.p. lattice, 1100 glide planes cut the trian-
gular interstices of the close packed planes. Two vari-
ants of the WC lattice occupy the h.c.p. basis with

� �dissimilar atoms in the two sites 31,32 . Our discussion
shows that the two variants must nucleate equally on
� 4hh2h l planes, which all have normals in glide planes.
Other planes break the symmetry so variants generally
occur in unequal proportions.

3.4.2. Screw axis
The use of analogous methods for screw axes finds

application only to those terraces that possess normals
Ž .parallel to the screw axis see Section 3.5 .

3.4.3. Combined symmetries
The results may be deduced in alternative ways.

² :From inversion and the 001 Ge twofold axes, for
example, one can show that two GaAs variants form
equivalently for all surface normals that lie in the plane
perpendicular to the rotation axes. These are of course

� 4the hk0 planes, so the Pond result is again obtained.
Results of multilevel behavior for a variety of crystal
structures are collected in Section 3.6.

3.5. Multile�el effects on the global symmetry

Successive terraces of multilevel substrates with a
basis generally differ in structure but not symmetry.
Therefore, the global symmetry of variants on the
entire surface often is the same as that for a single
terrace. An exception occurs when the terrace is per-
pendicular to a screw axis of the substrate. Orienta-
tions of successive terraces then conform to the screw
symmetry, and the variants on those terraces occur in
orientations determined by the screw operation. The
global symmetry of the surface is then the union of the
global symmetry of the terrace and the rotational
symmetry of the screw axis. Similarly, for epilayers, the
axial translation that distinguishes an epilayer screw
axis from a true rotation axis is lost in the global
symmetry, and no distinction may be made between
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epilayer screw and simple rotation axes. A case in point
Ž .is Ge 001 , which is perpendicular to a fourfold screw

Ž .axis. Thus, the global symmetry of a multilevel Ge 001
substrate for variant enumeration is 4mm, while that of

Ž .a single 001 terrace is 2mm.

3.6. Summary of results

Sections 3.3 and 3.4 provide orientations of multi-
level diatomic crystals that, by symmetry, maintain equal

Žpopulations of variants, just as do Bravais crystals Sec-
.tion 3.1 . Of greater interest are those remaining orien-

tations, which discriminate among variants, and thereby
offer the opportunity for experimental design. Table 2
collects results for various crystals with a basis of two
atoms. Orientations that lack selectivity are listed un-
der ‘formula unit’ or ‘basis symmetry’ when caused by
formula units in the planes or by symmetry of the basis.
The remaining low index planes, from which selectivity
may be anticipated, are listed under ‘active surfaces’.

The selectivity of the surfaces identified in Table 2
can arise from several alternative physical mechanisms.
These include different surface areas occupied by the
two types of terrace in equilibrium, since their differing
chemistries generally bring different surface energies.
Otherwise the differing nucleation and growth
processes, both on the terraces and at their surround-
ing step edges, can create variant populations that
differ between the two terrace types. On a rough but

Ž .not miscut Section 4 surface, all variants for a particu-
lar terrace occur equally, for reasons given in Section
3.1, so selectivity is lacking. Multilevel surfaces, there-
fore, offer most control when only one variant grows on
each type of terrace. Materials tend to occur naturally

Ž .with neutral surface planes e.g. alkali halides , which
make the smoothest templates. We mention that polar
surfaces can nevertheless either occur with one species
occupying almost all the terminating planes, e.g. for

Ž . � �sapphire as Al O 0001 41 , or can be prepared in2 3
� � �that form see, e.g. Barbier and Renaud 42 for NiO

Ž . Ž .�111 and MgO 111 . In effect the entire basis is
removed at steps. As an example of a more complex
substrate, the principal planes of sapphire are treated
in Section 4.4.

4. Vicinal substrates

Step edges usually bind deposited species more
strongly than do terrace sites. They bias variant popula-
tions as illustrated in Fig. 5. Of special interest here are
experimental conditions under which a single variant
can, by choice of miscut, be made to grow at the
expense of other variants. For simple substrates, exper-

Ž . Ž .imental studies of Cu Au 111 on Nb 110 demon-3
strate that a 1� miscut can eliminate almost all nuclei

Ž .of a less favored twin variant even though the variants
� �are equivalent on the terrace by symmetry 43 . Much

earlier, experiments conducted on non-symmorphic
crystals, apparently without reference to theory, but in
conformity to the Pond result, found that single-

Ž . Ž . � �domain GaAs 100 grew on Si 100 miscut along 011
� � � � � �44 , and along 211 45 , and later GaAs was grown on

Ž . � � � �Ge 100 miscut along 011 46 . For small miscuts two
Ž .variants antiphase domains occur at low coverage on

glide-related surfaces, but one grows out after 50 nm to
leave a single variant; for tilts of 4� a single variant
dominated throughout growth. Miscut has been equally
effective when used for substrate and epilayer crystals
with more complex structures. These include, for exam-
ple, Bi Sr Ca Cu O grown on miscut SrTiO2 2 n�1 n 2 n�4 3
� � Ž . � �47 and on MgO 110 with CeO buffer layers 48 . In2
some cases as above the epitaxial structure is unaf-
fected by subsequent processing, but in others variants
are formed by a structural phase transformation that
makes the epilayer anisotropic after growth, during
subsequent cooling, as in the case of PbTiO grown on3

Ž . � �vicinal SrTiO 001 49 . The experimental research in3
the several areas has occurred independently and
largely without reference to theory. Taken together,
these experiments establish that miscut offers a power-

Table 2
aPlanes of diatomic crystals for which successive terraces are equivalent owing to the symmetry of the basis or because they contain formula units

Substrate Formula units Basis symmetry Active surfaces

� 4� 4� 4 � 4� 4� 4 � 4� 4� 4Diamond 110 130 211 100 110 120 111 113 122
� 4� 4 � 4 � 4330 332 230 133

� 4 � 4 � 4 � 4 � 4 � 4h.c.p. 112 0 112 2 0001 112 0 11 00 11 01
� 4 � 4 � 4 � 4112 2 112 1 112 2 11 0 2
� 4� 4 � 4� 4� 4CsCl 110 211 100 111 210
� 4� 4� 4 � 4� 4� 4Rocksalt 100 110 112 111 113 133
� 4� 4� 4123 221 223
� 4� 4� 4 � 4� 4� 4Zincblende 110 310 211 100 210 111
� 4� 4 � 4� 4� 4330 332 113 221 230

a The final column lists remaining planes that yield generally inequivalent populations.
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ful means to control variant populations. Details of
growth on vicinal surfaces are revealed by low energy

� �electron microscopy 50 . In what follows we consider
Bravais crystals and multi-atom bases consecutively.

4.1. Miscut Bra�ais crystal substrate

The dependence of variant nucleation on vicinal
miscut can be traced for sufficiently small miscut by
noting that each step contributes its own bias to the net
proportions of variants that are nucleated, in competi-
tion with both terrace nucleation and the nucleation at
other step edges. The result is sketched for a vicinal
crystal in Fig. 5c. For a crystal that lacks miscut the
variants occur in equal proportions. Since extra steps of
one type contribute additively for small miscut, the
proportions of variants must vary linearly with the bias
of steps, and hence linearly with miscut angle. Because
the distribution of alternative steps depends on the
miscut azimuth, the variant proportions also vary with
miscut direction. Here we quantify the way symmetry
constrains the variations.

Variant proportions depend on the orientation 	
and size 
 of the surface miscut vector m��
. Here 

is the angle between the terrace normal and the nor-

Ž .mal to the average surface i.e. the miscut angle and 	
is the angle unit vector � down the miscut gradient
makes with a chosen reference. The fraction of variant

Ž .� is written f 
,	 , with � the substrate symmetry�

Ž .operation not present in the epilayer that creates
variant � . If the behavior is linear for 
 small, the

Ž .steps create proportions C
 f 	 , with C constant. We�

Ž .now find the dependence of f 	 on 	 as fixed by�

symmetry. There are two main points.
First, any symmetry elements that are shared by the

substrate and the epilayer are symmetries of the entire
Ž .system and belong to the f 	 also. For example, in a�

system with a fourfold substrate and a twofold epilayer,
the miscuts m and �m are interchanged by a rotation
� which leaves both the substrate and epilayer un-
changed. The physical consequence is that the variant

Ž .fraction f 	 also must have twofold symmetry in its�

dependence on 	. For similar reasons a mirror shared
between the substrate and the epilayer introduce the

Ž .same mirror into f 	 .�

The second point concerns symmetry elements of the
substrate that are not shared by the epilayer. Being
responsible for the variants, these operations may be
identified by the label � of the variant to which each
gives rise. n variants caused by an uncancelled n-fold
rotational axis must exhibit equivalent behaviors. This
means that only one independent fraction exists, say

Ž .the first f 	 , while the remainder are obtained from0

Ž . Ž . Ž .f 	�2�p�n � f 	 , p�1,2...n�1 10p 0

Rotational symmetry alone creates no other con-
straint on variants.

A substrate mirror not present in the epilayer has
Ž .further effect in f 	 . Specifically, two variants created�

by the mirror must occur equally when the miscut
vector coincides with the mirror plane. For other orien-
tations of miscut the two variants occur in a ratio that
is inverted for the mirror image miscut orientation.
Specifically,

Ž . Ž . Ž .f 	 � f �	 11� ��

where 	 is measured from the mirror plane.
When only two variants � and �� are created by a

mirror, f � f �1 and the function� ��

� Ž . Ž .� Ž .R � ln f 	 �f 	 12� �� �� �

� �is an odd function of 	, as noted elsewhere 43 . This
Ž .contrasts with the behavior of f 	 for a mirror which�

is present in both the epilayer and substrate, for which
R is e�en in 	�	 , in keeping with the discussion� �� m
above. Experiments consistent with these results have

Ž .appeared for Cu Au 111 epilayers, which are three-3
Ž .fold with a mirror, grown with two twin variants on

Ž .Nb 110 substrates which are twofold with a mirror, so
that odd and even behaviors both occur. The observed
bias on variant proportions becomes large only for
miscuts exceeding �0.5�, and for miscuts �1� one
variant or the other is almost completely eliminated
� �43 . The behavior is qualitatively consistent with a
terrace length of �200 A from roughness and excess
steps from miscut that eliminate almost all opposing
steps as the miscut angle is increased. Similarly, mis-

� �cuts � 1� cause ‘tuned tilt’ 38 to saturate, with the
opposing variant almost completely eliminated.

4.2. An example of �ariant proportions.

Little is known from experiment about the depen-
Ž .dence of f 	 on 	. Nor does theory provide clear�

Ž .examples. Still, knowledge of f 	 in practical cases is�

a key ingredient in future efforts to eliminate un-
wanted variants from epitaxial materials. Here we de-
scribe a model that illustrates the strikingly anisotropic
changes of variant population with miscut azimuth that
occur within the symmetry restrictions described above.

We choose an epilayer that lacks symmetry grown on
Ž .a substrate with a twofold axis and mirror 2 mm , so

that four variants occur. To maximize anisotropic fea-
tures we limit surface steps to the two directions a2

Žand a of nearest neighbors in the surface net Fig. 6a3
.inset , and postulate that each variant is created by

only one type of step: variants �1 by �a , respec-2
tively, and variants �2 by �a , respectively. Here �a3 2
correspond to the two signs of step with edges parallel
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to a . Any miscut vector m��
 corresponds to an2
average step orientation l�� x n with n the terrace
normal. This unit length of step is assumed to break
into facets along a and a simply by projection, ac-2 3
cording to:

Ž .l�� a �� a 132 2 3 3

in which

Ž .� � lx a �a x a ; � � lx a �a x a 142 3 2 3 3 2 3 2

The fractions of the variants are given by

Ž . Ž .f 	 �
 �� 
 15� � � �

We take two alternative models for the coefficients

 which specify the relative rates at which the variants�

Ž .form. First Model I we examine the limit in which
nucleation occurs only at step edges, with negligible
terrace nucleation. For the mirror variants �1 nucle-
ated on step edges�a we take: 
 �� and 
 �02 1� 2 1�
when � �0; and 
 ��� � and 
 �0 when � �02 1� 2 1� 2
Žso that negative � a is taken as a positi�e coefficient2 2

.multiplying the unit negative step, namely �a . This is2
a reasonable model, with the nucleation rate of any
variant proportional to the total length of the facet at
which it nucleates. In a similar way the mirror variants
�2 are nucleated on �a . The results are shown as3
functions of 	 in Fig. 8a, in which an uncancelled
mirror plane is defined as 	 �0.m

Ž .As a second example, Model II illustrates the limit-
ing regime of small miscut, again linear in 
, in which

Ž .nucleation on the terraces or at roughness remains
dominant. If the variants are nucleated equally, other
than for the small perturbation due to nucleation on
excess steps caused by miscut, the relative magnitudes
of the latter terms are again given by Model I. Then

Ž . Ž .f 	 �
� �� 
� 16� � � �

with modified coefficients

Ž .
� �1�A
 17� �

in which 
 has the value given above for model I and�

Ž . Ž .A is a constant �1 that fixes the large factor by
Ž .which terrace- or roughness -nucleation exceeds step

nucleation. The result of this calculation is given in Fig.
8b.

Fig. 8a,b both show how the mirror variants for each
rotational label have complementary behavior, in
agreement with the symmetry described above, and for
both Model I and Model II. The fractions of the two
rotational variants in each case differ by a rotation of
� but are otherwise identical. The differences between

Fig. 8. The fractional occurrence of variants is shown as a function of
angle 	 for the four variants in the model described in the text. Part
Ž .a gives the proportions when variants nucleate only on step edges

Ž .and part b shows the case where nucleation on steps competes with
the nucleation on terraces.

Fig. 8a and b illustrate the way physical mechanisms
cause the angular variation to depend on the magni-
tude 
 of the miscut, outside the linear regime. The
reader is cautioned that the particular cases shown in
Fig. 6 are illustrative results of microscopic models, but
still reveal general features of symmetry-derived behav-
ior.

Of particular interest is the way miscut offers the
means to enhance the population of selected variants.

Ž .It is notable that the model with 2mm substrate
Ž .symmetry and step nucleation only Fig. 8a does ex-

hibit four orientations at which each variant, alone, is
present. This ideal selectivity is surely not possible,
however, with threefold or sixfold substrate symmetry
because no miscut azimuth then selects one type of
step uniquely. Nor can it occur if significant nucleation
takes place on the terraces, as in Fig. 8b.

4.3. Miscut of crystals with a basis

The results for Bravais lattices remain valid for sub-
strates of arbitrary complexity. Specifically, surface mis-
cuts along any two orientations that are related by
rotational or mirror symmetries of the substrate must
result in equivalent proportions of two variants related
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by the same substrate operations. The equivalence
holds for any degree of substrate complexity. Section
4A remain valid regardless of how the miscut dissects
the basis, because the equivalent dissection must occur
at other symmetry-related azimuths. Of course a multi-
level surface present at 
�0 may be chemically het-

Ž .erogeneous see Fig. 6 .
Further exact relationships for more complex crystals

derive from the structure of the basis. Here we treat
only systems with two atoms per cell for reasons analo-
gous to those explained in Section 3, and consider
chemically homogeneous systems first.

4.3.1. Vicinal crystals with a basis of two identical atoms
With only two similar atoms per cell, multilevel crys-

Ž .tals and hence vicinal crystals nevertheless possess
two distinct types of terrace unless all terraces contain
exact formula units, as explained in Section 3.3. Other-
wise, successive close packed step edges may have
differing line energies that alternate, and the chemical
processes that take place at the edges of the terraces
differ for the two types of step edge. This is the case for
variant nucleation on principal surfaces of even the

Ž .simplest diatomic lattices. For Ge 001 miscut along
² :011 , for example, successive terraces have atoms at

² :the 011 steps with bonds to atoms beneath that
alternate, from one terrace to the next, between paral-

Žlel and perpendicular to close packed steps the surface
� �chemistry gives rise to a ‘dimer row’ reconstruction 33

.that alternates from one terrace to the next . Similarly,
Ž .in the h.c.p. lattice, close packed steps on the 0001

surface have nearest neighbors from the plane below
that alternate towards and away from the step on

� �successive terraces. Very different physical 51 and
� �chemical 52,53 characteristics may result for the two

alternating types of step edge. The difference includes
variant formation, so it is important to identify condi-
tions that create the distinct chemical behaviors. As
detailed in Section 3.3, the desired difference is main-
tained except when the two crystal planes that contain
A and A� sites have chemical behaviors that are mirror
images in the glide plane, and are therefore equivalent
by symmetry. The way vicinal miscut can be employed
to break this symmetry is clearly a topic of interest.

The critical point is that glide-related variants are
chemically equivalent only for step edges that are mir-

Žrors in the glide plane so that the entire geometries of
.successive A and A� planes are mirror images . But

obviously this is possible only when the miscut is ori-
ented in the glide plane. Therefore, even when succes-
sive planes are glide-related and thus equivalent, the
equivalence can be broken by choice, by selecting a
miscut directed along an azimuth that lies out of the

� � Ž .glide plane, as with 011 for zincblende grown on 100
diamond planes. This valuable tool for the experimen-

talist who needs to tailor variant distributions has met
� �with some success in practice 44�46 .

The results summarized here complete the prescrip-
tion for control of variant occurrence. A crystal with a
glide plane creates two sets of variants whose members
occur as pairs interrelated by the glide operation. Mis-
cut discriminates among members of each set, as for
Bravais lattices, even when the surface normal remains
in a glide plane, and the degree of selectivity described
in Section 4.2 remains accessible. When, in addition,
the surface normal leaves the glide plane there is the
further opportunity to control the proportions inside
each glide-related pair, because the two glide-related
variants are then no longer equivalent. Since
symmetry-related alternative miscuts are available that
interchange the behaviors of variant pairs, it is obvious
in principle that the use of miscut offers the opportu-
nity to enhance the population of any single, selected
variant over all other variants. For this reason vicinal
miscut is the most powerful tool for variant control
available to the crystal grower.

4.3.2. Formula unit planes
When a multi-level crystal possesses a basis, it is

shown in Section 3 that the variants remain equivalent
for multilevel crystals on planes that contain complete
formula units AA� or AB. This multi-level constraint
does not extend to all miscut crystals with formula unit
planes. Specifically, successive steps may not be chemi-
cally identical, and this can create a heterogeneous
distribution of variants.

The step edges are chemically identical for all miscut
angles 
 only for those directions of miscut that create

Žstep edges at which A and B atoms occur equally in
the truncated perfect crystal; the subsequent relaxation

.and thermalization does not affect the conclusions . To
discuss this quantitatively we define basis vectors bs ,2
bs , for the two-dimensional reciprocal lattice of the3
substrate surface net as , as . Here note that bs , bs , are2 3 2 3
coplanar with as , as , and differ from the three-dimen-2 3
sional reciprocal lattice vectors defined in Section 2.
The vectors of the surface net reciprocal lattice are
therefore

s s Ž .g �k b � l b 18s 2 3

in which k and l are integers, and italic letters again
identify properties of the surface net rather than the
bulk Bravais lattice. The g identify atomic rows bys
their in-plane normals

� � Ž .��g � g 19s s

Here, the step normal is identified with the miscut
unit vector � that creates the particular step. An
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in-plane position vector that connects A sites to B sites
is

s s Ž .��x a �x a 202 2 3 3

Ž .with x , x , fractional coordinates in the surface unit2 3
cell. Then the condition that the successive step edges
contain A and B equivalently is

s Ž .g ���2��x k�x l�n 212 3

Ž .with n an integer as in Section 3.3 . The fractions x ,2
x , thus identify integers pairs h, k that make n an3

Ž . Ž .integer. From Eqs. 20 and 21 we then obtain the
miscut unit vectors � for which successive step edges
behave identically. Only for these directions of miscut
does a formula-unit surface maintain its formula-unit
character, with each step edge contributing variants in
the same way. The results are particular to each indi-
vidual surface orientation of every different crystal
structure, and can be worked out as needed. The main
point is that even crystals with formula unit terraces
must generally nucleate variants unevenly when the
terraces are miscut so that the two species do not
appear in molecular combinations.

4.4. Sapphire: a complex but useful substrate

Here we analyze the characteristics of sapphire as a
substrate material. This provides a useful example of
more complex substrates. It gains relevance from the
fact that four planes are commercially available in
epitaxial grade material, and with vicinal miscuts se-
lectable to 0.1�, and as a result have been employed in

� �much epitaxial synthesis 54 . Their use in selecting
epilayer symmetry is of evident interest. Note how the
discussion necessarily passes from three-dimensional
through two-dimensional symmetries for the several
surface cuts in order to determine variant behavior.

Ž .Sapphire Al O or corundum has the space group2 3
ŽR3 c in full: R3 c�2; number 167 in the International

� �.Tables 55 . It is rhombohedral with two formula units
per primitive cell. The conventional hexagonal cell
contains three primitive cells. We consider the conse-

Ž . Ž . Ž .quent symmetry constraints on 0001 , 1100 , 1102
Ž .and 1120 planes as substrates, including activity in-

duced by miscut.

( )4.4.1. 0001 substrates
The surface cut breaks the symmetry of the point

group 3m, leaving 3m, and since the glide directions are
not parallel to the surface, the terrace symmetry is just

Ž .threefold 3 . Going beyond symmetry alone, the sur-
� �face is likely 38 to remain oxygen-terminated, and the

six oxygens per cell occur in two planes that are glide-
related and lie perpendicular to the c-axis. On a sub-

strate lacking miscut, an epilayer with no symmetry will
thus have six variants in two threefold sets related by a
� 41100 glide plane; an epilayer mirror parallel to the
substrate glide plane reduces the variants to three.
Epilayers with 3 and 6 symmetry exhibit two mirror
variants, one for each terrace, in proportions that vary

� �with 1100 miscut, while epilayers with 3m and 6mm
symmetry occur with a single variant.

( )4.4.2. 1100 substrates
This cut breaks all symmetry elements except one

glide plane, with glide parallel to the c-axis. There is
only one type of terrace, and epilayers that lack a
mirror parallel to the glide plane exhibit two variants
with proportions that vary with miscut perpendicular to
the glide plane.

( )4.4.3. 1102 substrates
Ž .Like 1100 , one glide plane has its glide parallel to

the surface and creates two variants in epilayers that
lack a mirror, in proportions that are tuned by miscut
perpendicular to the glide plane. There are two Al
planes and three O planes per repeat.

( )4.4.4. 1120 substrates
All symmetry elements except a twofold axis are

broken by this surface orientation. The Al ions lie in
planes with single rows of sites empty, while the O ions
lie in two slightly puckered planes. Each terrace has a
twofold axis and accordingly creates two variants of
epilayers that lack a twofold axis or a twofold screw
axis normal to the surface; miscut tunes the propor-
tions of these variants but its optimal azimuth is not
fixed by symmetry alone. This is the surface on which

Ž .useful buffers of 011 refractory bcc metals grow with
� � � �111 parallel to the missing Al rows 54 .

4.5. Summary of results for �icinal miscut

Miscut can cause changes of variant populations. It
can be employed to break a substrate symmetry, lack-
ing in the epilayer, that would otherwise create un-
wanted variants. One of the most useful results avail-
able to the crystal grower seeking to eliminate variants
created by substrate mirrors is that miscut along the
mirror normal causes a repopulation of the two vari-
ants, related through the mirror, by complementary
changes that are linear in the miscut angle 
, for 

small. Miscut that tilts the surface normal out of a glide
plane discriminates between glide-related variants and
can offer complete selectivity when only the two vari-
ants compete. Symmetry does not reveal which azimuth
of miscut most enhances any chosen rotational variant,
but directions perpendicular to atomic rows exhibit
population maxima in the model calculations given
above. Variant populations generally change linearly
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with miscut angle except where they must, by symme-
try, be even in 
.

5. Real crystals: symmetry results in the presence of
defect structure

The purpose of this section is to show how the
symmetry arguments used above hold up in real mate-
rials that contain symmetry-breaking defect structures.

5.1. Thermally acti�ated structure

The surfaces of real substrates and epilayers support
adatoms and advacancies in equilibrium proportions,
and the surface species are displaced by relaxations1

� �and reconstructions 56 . These complications are
largely extraneous to the behavior of variants because
of latent symmetries that reflect the symmetry of the
ideal surface.

Our argument for all behavior activated by thermal
fluctuations is exact and is presented in brief as follows.
The Hamiltonians of the ideal crystals defined above
possess precisely the two-dimensional symmetries iden-
tified in Section 2. Consequently, for each actual con-
figuration and thermal process that breaks this symme-
try, there exists an exactly analogous configuration and
process in which the same symmetry breaking occurs,
but operated on by any one of the identified symmetry
operations to which the surface conforms. This applies
clearly and precisely to all manner of site relaxations
undergone by surface species, to all surface reconstruc-
tions and all configurations of surface point defects.
Since the energetics and phase spaces of the equivalent
configurations are exactly equivalent from symmetry, it
follows that their average occurrences in thermal
processes are identical. This being the case it is an
exact conclusion that the average chemical products of
all real surfaces that are thermal evolutions of any
ideal surface, of a type considered above, retain pre-
cisely the same average symmetry as the ideal surface.
This identity includes the occurrence of epitaxial vari-
ants, which is thus determined exactly by the symme-
tries of the ideal surface. Thus, Sections 2�4 remain
valid in the presence of symmetry breaking in the
thermal evolution of structure. The result is not con-

1 Much the same two-dimensional symmetry considerations apply
to variants of epilayers and of reconstructions. Each also has inter-
variant boundaries with specific line energies, and the variants induce
stresses in the substrate in both cases. For both phenomena the
result can be competing long and short range interactions that induce

� �superstructure and can form stripe phases 57 in the surface config-
uration of lowest free energy; this influence epilayers only to the
extent that the surface mobility is sufficient for the structures to
respond to the interactions, which limits the relevance mainly to
monolayers.

fined to equilibrium but rather pertains to all thermal
processes. Note that a close parallel exists between
symmetry constraints for surface reconstructive transi-

1 � �tions 57 and for epilayers.

5.2. Variants at non-thermal defects

Consider variant generation at a particular non-equi-
librium flaw in the otherwise ideal surface, and at a
second equivalent flaw produced by operating on the
first geometry with any one of the symmetry operations
of the ideal surface. The two surfaces so created clearly
have equivalent chemical behaviors, which includes
variants related by the same symmetry operation.

Surface roughness often has athermal components
caused by surface preparation. Provided that these
features lack bias among equivalent crystal axes, they
necessarily create the same uniform distribution of
epilayer variants as the ideal terrace, as stated in
Section 3. Second, for the biassed steps produced by
miscut, the equivalent miscut produced by a substrate
symmetry operation must create the equivalent surface
chemistry, including variant generation, as stated in
Section 4. These cases are to be distinguished from
others which, while plausible, lack a fundamental basis.
Specifically, it might be argued that arbitrary structural

Ž .defects from random and therefore unbiased causes
Ž .must give results e.g. variants that conform to the

symmetry of the ideal surface. The argument amounts
to a statement that the volumes of phase space for the
equivalent events are equal, but in itself this certainly
does not ensure the outcome in all instances.

5.3. Strain and incommensurability

Translational variants become hard to distinguish in
� �normally strained and incommensurate 23�26 epilay-

Žers the bulk, unstrained substrate and epilayer materi-
.als are invariably incommensurate . While the first

monolayers may occupy sites of the substrate net pseu-
domorphically, beyond a critical thickness the epilayer
transforms to a strained three-dimensional lattice and
later relaxes by creation of ‘misfit’ dislocations that
change the spacing at the interface. The results are

� �quantified by a ‘strain layer’ model 58 which predicts
as a function of thickness the epilayer relaxation re-
quired to minimize the strain and interfacial energy. In
a sufficiently thin film the displacements parallel to the
surface must be the same for all perpendicular posi-

� �tions; the equations of static elastic equilibrium 59
then have solutions that, when uniform in the plane of
the interface, must be uniform in the third dimension

Ž .also specifically, through the film thickness . Then an
entire thin epilayer exists in a state of uniform but gener-
ally anisotropic elastic strain. For variant domains only
103 atoms wide and misfits typically several percent,
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the resulting displacements are tens of atomic spacings.
As a result epilayers are incommensurate with the

Žsubstrate except for thin layers in which the strain is
.unrelaxed , and no exact fit remains between atomic

locations in the epilayer bulk and the substrate surface.
Being very thick compared to the epilayer, the subs-
trate remains in a state of uniform, but essentially zero,
strain.

Incommensurability has no effect on variants derived
from point symmetry operations, and the results of
Sections 2�4 remain valid. Two points may be made
about translational variants. First, the identification of
translational variants with specific lattice sites may be
lost. Second, interfacial structure may afford a means
to identify the local translational state of the epilayer
relative to the substrate lattice.

Suppose that the variant size is D�Na, with in-plane
atom spacing a, and that the fractional misfit between
the substrate and epilayer spacings is a strain �. When
N��1, a strain larger than a lattice spacing occurs
across a variant, so variants can no longer be associated
with specific lattice sites. Visible domain boundaries
may still distinguish alternative translational domains,
all variants having the same shift, but the domains
cannot be identified with specific substrate sites. When
variants have coupled translational and point opera-
tions it seems best to identify them by the point opera-
tion so that the limitation on translational identifica-
tion be avoided where possible.

The interfacial structure that decouples the epilayer
spacing from the substrate may be detailed and com-

� �plex, and attract much interest 18,60,61 . Many rele-
vant features occur in the Frenkel-Kontorowa model;
excellent reviews of this elaborate behavior are avail-

� �able 62 . The epilayer and substrate nets often remain
partially coherent at their interface, with regions of
almost perfect fit separated by defective material
� �60,61 . Growth instabilities in which strain causes

� �non-planar growth fronts 63,64 are neglected here.
The translational states of variants are most easily
observed for thin pseudomorphic films where the
registry and misfit at boundaries among monolayer
variants may be explored at atomic resolution, for

� �example by scanning tunneling microscopy 65,66 . The
point of interest here is that for a thick incommensu-
rate film of low index, the interfacial registry and the
interfacial line defects between commensurate regions
of interface may both remain discernable. Examples

Ž .are the interfacial networks for Ni Si on Si 1112
� �observed by transmission electron microscopy 67 , and

Ž .for Ag on MgO 001 observed by grazing incidence
� � Ž .X-ray diffraction 68 . These features can in principle

be employed to classify translationally dissimilar inter-
facial regions even for an incommensurate epilayer.

In summary, translational variants in thick epilayers
usually cannot be classified by substrate sites. It may

still be possible to identify translational states by inter-
facial structure, using line defects among coherent in-
terfacial regions smaller than the variants.

5.4. Strain at step edges

When nucleation is limited, variants created on one
terrace pass over step edges to cover neighboring ter-
races also, as in Fig. 1a. This has no effect on rotational
and mirror variants, but can affect translational identi-
ties. The substrate and epilayer translation vectors ae,1
as , between terraces generally differ, and step edges act1
as nuclei of strain in both the substrate and epilayer

Ževen for Bravais lattices still larger differences may
occur when the vectors � of multi-atom bases are

.involved . The character of these interfacial defects is
� �discussed by Hirth and Pond 20 and Sutton and

� �Balluffi 18 . In size the perpendicular component of
Ž .misfit is a fraction of the step height. For MgO 001

Ž .grown rotated 45� on b.c.c. V 001 the substrate and
� �epilayer planes differ in thickness 69 by a factor as

large as �2. Such shifts are comparable with the dis-
placements between variants, so substrate steps inter-
fere with the identification of translational variants.

Ž .The difficulties increase for high indices. When g h,k,l
is large and the plane spacing d�2���g� is corre-
spondingly small, the vectors as , as of the surface net2 3
are large multiples of as , as , as , so that the substrate1 2 3
and epilayer displacements at a step edge may differ by
interatomic distances.

In summary, the displacements caused by steps con-
tribute to epitaxial strain and tilt, but do not seriously

Žinfluence rotational and mirror variants the results of
Sections 2�4 for variants from point symmetry remain

.valid . Epilayer registry is nevertheless degraded and
translational identities may be lost.

6. Applications

The main purpose of this paper is to provide a
comprehensive and accessible treatment of variants
that form during heteroepitaxy. It is our expectation
that, with the results presented here, most examples of
variant formation met in practical cases can be under-
stood and analyzed by inspection alone.

Variants often appear as undesirable structures that
break translational symmetry and scatter elementary
excitations unnecessarily. In this paper we detail the
steps available to control variant formation. Particular
orientations of miscut that differentiate effectively
among the populations of variants are identified from
symmetry; those that are ineffective may be avoided.
The experimental application of these ideas remains at
present in its infancy. We, nevertheless, visualize that
different mechanisms by which multilevel structure af-
fects variants will eventually be identified and the de-
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tailed processes explored. For example, step-doubling
caused by substrate energetics, and nucleation kinetics
that originate in reactivity, must generally exhibit dif-
ferent chemical and temperature signatures that re-
main as yet to be identified in detail and employed in
systematic epitaxial synthesis.
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Appendix A. Symmetries of the epilayer

While the substrate is semi-infinite with a single
surface, a thin film epilayer may reasonably be modeled
as a slab with both upper and lower surfaces. The new
symmetry elements thus, introduced are of interest and
are discussed briefly here.

The symmetry elements not present for a two-dimen-
sional crystal are: a twofold rotation axis parallel to the

Ž .slab m� or 2 ; a mirror with normal along the surface
Ž . Ž .normal 1� or m ; an inversion center 2� or 1 ; the

Žinversion axes 3, 4, 6� or 3 and 4� or 4 the twofold axis
2 is equivalent to a mirror and the sixfold axis 6 to a
threefold axis with a perpendicular mirror, so they can

.be ignored . Where two symbols are given the first is a
symmetry operation for a layer and the second for the

point group. All inversion axes of a slab have the axis
perpendicular to the surface. The symmetry operations
of the epilayer form a group. The groups are isomor-
phic onto the group of periodic patterns with patterns

Žon both sides of the paper the point groups of diperi-
. � �odic plane figures , onto the diffraction groups 66 , and

onto the two dimensional two-color point groups. These
are the 31 groups listed in Table 3.

A comment is required about screw axes perpendicu-
lar to the surface, and glide in any plane that contains
the surface normal. Suppose that the substrate has a
threefold rotation axis and the epilayer has a threefold
screw axis. Then the epilayer goes down in three orien-
tations which are identical except for displacements
normal to the surface. To the degree that strain at their

Ž .interfaces can be accommodated Section 5.4 , this
distinction can be ignored, and a substrate or epilayer
screw axis may be treated as a rotation axis of the same
order, just as glide planes can be treated as simple
mirrors.

The variants created by a mirror are enantiomorphs
of the originals, related by the change from right handed
to left handed axes. They have the same chemical
configuration and surface properties, and bear the same
relationship to the substrate, whose structure conforms
to the mirror. Thus, they may reasonably be termed
variants. In some cases they have the same structure as
the originals. This happens when the epilayer also
contains a mirror perpendicular to the surface. The
reflection between the variants is then equivalent to

Table 3
aSymmetries of the epilayer

Ž . Ž . Ž .White Grey m added B and W 2 added B and W Inv added

� �1 1 E 1� m I m� 2 E 2� 1 I
m m m1� 2 mm 2�mm� 2�m

�2 2 E 21� 2�m I 2 m�m� 222 E 4� 4 I
2 mm 2 mm 2 mm1� mmm 4�mm� 42 m
3 3 E 31� 6 I 3 m� 32 E 6� 3 I
3 m 3 m 3m1� 6m2 6�mm� 3 m
4 4 E 41� 4�m I 4 m�m� 422 E
4 mm 4 mm 4mm1� 4�mmm
6 6 E 61� 6�m I 6 m�m� 622 E
6 mm 6 mm 6 mm1� 6�mmm

a The columns are in sets of three in which the left entry is the standard symbol for a point group of the diperiodic plane figures, the middle
column is the symbol for the same symmetry in the standard form for crystallographic point groups, and the third column gives information about

Ž .the group. The first set of columns gives the 10 ‘white’ groups, which are the point groups of one-sided figures the same as for the substrate . The
members of the second set of columns are the ‘grey’ groups, which have a mirror parallel to the layering added to the white groups. For the 11
remaining ‘black and white’ groups the surfaces are interchanged without a mirror. The third set of columns are symmetries derived from the
white groups by an added twofold axis parallel to the layers. The last column gives the three groups that are formed by added inversion axes. Each
horizontal row contains groups with the same plane symmetry and the same number of variants. Shaded rows contain groups with a vertical
mirror so the variants are related by a rotation about the surface normal. Groups labeled I have an inversion axis and the variants are related by a
rotation about a horizontal axis. Groups labeled E have neither a mirror nor a rotation axis. Those lacking an asterisk can arise only from
enantiomorphous crystal point groups, so no rotation can bring one variant into coincidence with another. Those marked by an asterisk may or
may not arise from an enantiomorphous point group. In the latter event there is a rotation that carries one variant into the other, but as it is
neither parallel nor perpendicular to the layer it requires an epilayer cut from the crystal at a different orientation. The several possible epilayer

� �symmetries for a given crystal point group have been tabulated by Buxton et al. 70 Tables 3 and 4.
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rotation of the variant about the surface normal through
twice the angle between the mirror in the substrate and
the mirror in the epilayer. When the mirrors are paral-
lel the two variants are degenerate and the substrate
mirror creates no new variant. This accounts for 13 of
the 31 groups in Table 3.

For the eight groups that have an inverting symmetry
axis but no mirror perpendicular to the surface, the
reflection between variants is equivalent to a rotation
by � about an axis parallel to the slab, which turns the
slab over. These eight groups are marked with an I in
Table 3.

For the remaining 10 groups, no rotation can bring
the variants into coincidence. For seven of the 10
groups the enantiomorphous variants come from enan-
tiomorphous crystals. However, for the remaining three,
namely 1, 2m�m� or 222, and m� or 2, the �ariants are
enantiomorphs but the crystals may or may not be,
depending on the point group of the crystal from which
the epilayer is formed.

Suppose that the aim is to grow an optically active
layer using one of the 10 enantiomorphous point groups
identified above. It is necessary to choose a substrate
that lacks the mirror, otherwise the result would be a
mixture of variants with both senses of rotation.
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