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Abstract

Methods of TDS spectra analysis start usually from the Polanyi-Wigner desorption rate equation. The Redhead approximative
solution of the equation can be rearranged into a reduced form in which it serves as an analytical expression for the desorption rate
versus time or temperature. Fitting the analytical form to an experimental curve we can confirm or deny the invariability of kinetic
parameters — a desorption energy E, and a preexponential factor v, — and determine their values. If the parameters depend on a
surface coverage 6 the application of the reduced form allows us to determine their values at € —0 and 6 — 60, and estimate the
dependence Ey4(@), v(®) from a single TDS spectrum. The method proposed in this paper is valid for the first-order kinetics of
desorption; for the estimation mentioned above an assumption is made that desorption sites are identical and that E4 as well as v,

changes with @ monotonously.

Keywords: Adsorption kinetics; Carbon monoxide; Thermal desorption

1. Introduction

In studies of gas—surface interactions, thermo-
desorption (TDS) or thermoprogrammed (TPD)
spectroscopy is often used despite the fact that
many other methods of surface analysis have been
developed, some of them more sensitive and more
precise. There are at least two reasons for TDS to
be attractive: the TDS technique is relatively simple
and the method can be applied even to electrically
insulated samples without further difficulties.
Excellent surveys of TDS methods are available
from the literature [1-3].

One of the goals of TDS measurements is the
determination of the kinetic parameters of desorp-
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tion — energy of desorption Eg4, preexponential
factor v;, and order of kinetics, . In the simplest
case when multiple steps and multiple adsorption
sites can be ignored the parameters are bound
together in the Polanyi-Wigner equation

E

I d
. — _ < 1
F=vhn exp< kT)’ (1)
where r is the desorption rate r = —dn/dt, n is the

- concentration of admolecules and E, refers to one

molecule. For the first-order kinetics, ie. [=1,
n can be easily replaced by the surface coverage ©
without any changes in the preexponential factor;
r= —d@/dt.

Desorption measurements are often carried out
in UHV conditions. Usually, the pumping speed
of the apparatus is constant and sufficiently high
and the increase p of a partial pressure which
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occurs during the desorption cycle is proportional
to the desorption rate . The whole area of the
desorption peak then corresponds to the initial
number of admolecules; the concentration at
moment ¢ can be obtained by integration of p(t)

oo}

n(t) = const. J pdt, (2)

t

where const. is given by the parameters of the
UHYV system and by the sample area. Moreover,
in TPD measurements the temperature rate T(t)
is known, it follows that the pressure-time curve
p(t) can be transformed into p(T) and (1) can be
applied for interpretation. Of course, the peak
shape and its area, N, depend now on the heating
regime [4]. In the simplest case of a linear heating
rate, T =T, + fSt, we have

n(T) = % const. j pdT= % const. N(T). (3)

With [ =1, we need not know the value of the
const. in (2) or (3) to determine the parameters
listed above (except the surface concentration n); p
(or r) can be given in arbitrary units and (n,v;) may
be replaced by (N,y = v,/p):

E
p(T)=yN(T) exp< - ﬁ)

dN(T
pr= -0, 4

or — if we introduce the quantity @, analogous to
o

E
(T)=70:(T) exp(— ﬁ>

do:(T)
dT

"(T) = . (5)

The analysis may be quite simple if the desorp-
tion parameters do not depend on the coverage @.
Numerous methods of the spectra analysis are
based on the work of Redhead [5] and Carter
[6]. The Arrhenius plot is often used to calculate
the desorption energy Eq4, the preexponential factor

v;, and the order of kinetics, I In an effort to find
an easier way how to extract the values of the
kinetic parameters from an experimental spectrum,
many approximative formulas have been found
[5,7-11] which work with the relations of E4 and
v; to some features of the spectrum: to the position
of the peak maximum T, to the temperature width
of the spectrum, to its shape etc. A method of the
reaction order determination together with typical
shapes of the spectra for different ! are given in
Ref. [12]. If the parameters change with @ a set
of TDP profiles is usually required which start
from different initial coverages @,. The present
work offers a procedure valid for | = 1 which allows
us — under some conditions — to determine (or at
least estimate) E4(@), v(@) from a single desorp-
tion trace.

The methods listed above — with the exception
of Refs. [1]and [6], where the problem of multiple
peaks is discussed — must assume the surface to be
homogeneous in E4 and v, even if they are applied
in the differential form (e.g. the threshold TPD -
TTPD - method, [2]). The method proposed
below does not require the equivalence of adsorp-
tion sites if applied to the small interval of the
spectrum. It is because it works with the desorption
rate and its temperature dependence and not with
the actual coverage. If the desorption comes from
sites characterized by different E4 and v, parts of
the spectrum may be revealed where the desorption
from one type of sites prevails. Not ony the values
of corresponding parameters but also the relative
number of the respective sites can be determined.

2. Dimensionless desorption peak

In Ref. [5], approximative solutions of (1) valid
for E4 = const, v; = const, for a linear temperature
rate T=T,+ ft, and for =1, [ =2 can be found.
For [ =1, the formula taken from Ref. [5] reads

pm_Bafl 1Y (TY
T \r ) T\
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Index m indicates the value corresponding to
the peak maximum. Introducing a parameter
a=E4/kT, and a variable x=(T—T,)/T, we
can rearrange (6) into the form r/r, = R(ex).
Analytical expressions not only for the reduced
desorption rate r/ry, (or p/p,) but also for its
derivatives and for the peak area A(«,x) could be
now obtained as functions of one variable (x) and
one parameter (¢):

R(o,x) =exp h% —(1+x)exp <%> + 1}
(7a)

Al,x) = Aq exp [ —(1 4 x) exp (1—‘%)} (7b)

A - —

ole,x) Ty (7¢)
Ao

Am - e s (7d)

where

and the whole peak area

[==]

A= JR(a,x) dx.
-1

The index 0 stands for the initial values, e = exp{1}.

Forming the expressions (7b)—(7d) we had to
take into account the expression (5), the relations
between the quantities of the real spectrum
(r@r,dr/dT) and the dimensionless functions
(R,dR/dx,A),

7‘(T) = rmR(cx,x(T)),
@T(T) =Ty TmA(OC,X(T)),

e 8)

and the behaviour of R at the point x = 0. At that
point, R = 1 and dR/dx = —2; the maximum value
of R is slightly larger than 1 and its position is at
some point x,, # 0. Both, the maximum position

x,, and the height R(x,) are determined by the
parameter «. An overwhelming number of experi-
mental data obtained for many combinations of
metallic substrates and CO, NO, O,, N,, H,
adsorbates give 23 <« <40 [13]. In that region of
&, | X, | <0.003 and R(x,) < 1.01.

R and A are schematically shown in Fig. 1. The
symbol w, represents the width of the spectrum at
half the peak maximum. It can be determined
numerically as a function of one parameter, «, and
easily transformed into the temperature width of
the spectrum: wg = T,w,. The data obtained by
this procedure fully agree with those given in
Ref. [8].

3. Approximation of r(T') spectra

To approximate a real TDS spectrum by R we
must respect three parameters: the position of the
spectrum on the temperature scale (T,,), the height
of the spectrum (), and its width (characterized
by ). The method of least squares in which three
parameters have to be searched for is quite accept-
able with the standard computer fitting pro-
grammes (Easy Plot, Origin etc.); it does not take
more than several minutes with PC.

For the fitting, it is now convenient to reintro-
duce T, T,, into Eq. (7) instead of x and find «,
T, and r,. With the values obtained, we can

Reduced desorption rate, R
o
Y
>

0 T T T T .
-0.25 ~0.20 =0.15 =0.10 =~0.05 =0.00 0.05 0.10
Dimens!oniess varlable, X

Fig. 1. R(x) for & =348, w, is the peak half-width, 4 is the
peak area corresponding to some actual coverage.
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calculate the parameters E4 and y (as with the
Arrhenius plot or other methods) and, in addition,
the initial coverage @r . The last parameter may
give us important information about the presence
and relative numbers of adsorption sites described
by different kinetic parameters.

The relations between (o, Ty,) and (Ey,y,0r,)
as obtained from the definition of ¢, from (7a) and
(8), and from the condition dR/dx = —2 at x =0,
are as follows:

Ed = akTm,
o+2
v = exp{«},
@To = AOrme' (9)

The expressions (9) can also help us to understand
the fact of the small dispersion of o over a wide
range of substrate-adsorbate combinations. They
give the relation E;y = ka( + 2) exp{a}; then for
23 <0 <40, 0yyerage =29 [13] we have

E
a=1nf+1ny—(6.8io.6), (10a)

and the change of o with E; and y is

d¢ 1 (6E4 Oy
» N29<Ed +y>' (10b)

It is seen that « is influenced only slightly by
changes in E4 and v.

The fitting can be applied to the whole spectrum
(“integral” approximation) or to a small interval
0T, op about a point [T;,p, ] (“differential” approxi-
mation). In the first case, it can be deduced from
a good agreement between the real spectrum and
R that the order of kinetics has been chosen
properly and that the parameters are constant (or
a perfect compensation effect takes place which is
not very probable). In the case of the differential
approximation, the parameters can be determined
at every point of the spectrum. In that case, «, T,
and ry, describe the spectrum which “completes”
the fitted interval and — if Eq = E4(0), v;=v,(0)
takes place or if the adsorption sites are not
identical — they can differ substantially from those
of the whole spectrum. The correctness of their
values will be discussed in Section 4.1.

4. Application of R (¢,x)
4.1. Simulated spectra

To verify the applicability of the approximation
simulated spectra have been analyzed because their
basic parameters are perfectly known. The spectra
have been obtained by the numerical solutions of
(5) for I=1 and for different input values ¥, Or,,
and E4; the Runge-Kutta numerical solution
(step 0.1K) has been used. Both E4 and y can
generally be functions of different parameters of
the surfacs, its coverage, temperature, and of the
properties of different adsorption sites. In all our
examples the assumption has been made that the
kinetic parameters do not depend explicitly on the
surface temperature.

4.1.1. Homogeneous surface with all adsorption
sites identical, constant parameters

y=10"K"%, Eg=138¢V, the initial coverage
(ie. the peak area) @r = 1. The spectrum is iden-
tical with that on Fig. 1. Both types of analyses —
the integral as well as the differential fitting of the
spectrum with the function r,, R — has been carried
out. As a result of the integral approximation, the
parameters o =347, T, =460.25K, r,=0.0293,
ie. y=937x 108K (logy=13972), E =
1.378 eV, @7, =0.9998 have been obtained. The
differential approximation (in which the intervals
0T =6K were taken) gives the parameters which
are demonstrated in Fig. 2 in dependence on the
relative coverage @ corresponding to the points
[T,p.]; the value T, was always situated in the
middle of 6T. The average values of the parameters
are as follows: logy=(13.957+0.009) K% a=
3472+ 0.02, E; = 1.3784 +0.0006 eV, O, = 1.003
1 0.003. The results agree with the input values
within an error of 0.05-0.3%.

In the present case of the homogeneous surface,
it is not necessary to analyze the spectrum with
the function r,R. Some simpler method can be
applied which utilizes the fact that the desorption
rate r(T) is proportional to the total actual cover-
age Or(T) obtained by the peak integration. One
of the convenient methods is the method of the
Arrhenius plot which is most often used not only
in the integral form but which also makes a base
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Fig. 2. Parameters o, logy, Eq, and @p, obtained from the
differential fitting of the simulated TDS spectrum (y = 10% K™Y
Eq=138¢V, O, =1) in dependence on the coverage.

for the differential TTPD method. To compare the
results, the Arrhenius plot technique has been used
to the spectrum described above, ie. the linear
regression of In /@y versus 1/T has been carried
out.

The regression can be performed not only in
terms of an Arrhenius plot, ie. in the form
In(r/O7) =Iny — Eg/kT but also in terms of the
dimensionless functions (7a)—(7d):

¥ a+2 1

In @T—oc-l—ln T —aoT, T (11)
which is equivalent to the fitting of #/@y (linearized
in that case) with the dimensionless function
(1/T,,)(R/A). Both interpretations give the same
values of E4 and y which confirms again the
applicability of dimensionless functions and the
relations (9). The results are for integral fitting
(the whole spectrum): E4=1380eV, y=9.95x
108 K~ (logy=13.984); for differential fitting
(with the same intervals as before): Eq= 13380+
0.0034¢eV, y=(841+02)x10®K~! (logy=
13.925 £ 0.04).

4.1.2. Adsorption sites identical, Eq4 depends on O,
v = const.

The spectra with parameters Eq=138
(1-0.107)eV, y=10“K™!, and O =1 or
Or,=0.5 have been analyzed. The analysis has
been made as follows:

Eq. (5) is still valid at every point #(T), @r(T)
of the spectrum; unfortunately, with an infinite
number of pairs (Eq,y). We are not able to identify
the pair of the proper actual values E4(@r) and
y(Or). The derivatives of #(T) or (+/O@7)(T) now
contain the changes of E4 and y. Making use of
the differential fitting with functions r,R or
(1/T,)(R/A) we misinterpret the derivatives on the
interval of approximation §T and the parameters
obtained are generally incorrect. The first deriva-
tives are given by the expressions

dr | E Eq
ar "k TP T

1 dEd dh’l’y
¥T 40, 467 )’

d0/0)  r Es ﬁ

dT Oy kT°
i dE, dI
e N A (12)
KT 40,  d6;

The first terms in Eq. (12) are the same as in the
case of constant E4 and y (with their actual values
E4(O7), ¥(@r)). The “correct” (unknown) functions
R and R/A which would respect the proper values
of E; and y at T would have the derivatives
proportional only to that first terms. Their values
at the point T would be R=ri/r,, A=
(1/T,)(@r/rm), but the area Ao =e/(e+2) would
differ from Or, /iy /Ty, It is because the desorption
process has been ruled by the changing parameters
before the point T is reached.

Unfortunately again, we do not know the way
how to separate the terms in Eq. (12). Of course,
even if it is not possible to find the correct functions
R and R/A we can use them formally. Comparing
the derivatives of r, r/@r with the derivatives of R,
R/A and neglecting 2x against (x+2) we can
rewrite Eq. (12) into the form

& _tnp(yprn
dT—T Trmdn i 2 )

a0y 1 (RY(. - (R
T T (A) <1 il (R ay D>’ (13)
(dE4/d@y)(1/kT) — d(In y)/d6; and R,

where D =
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(R/A) mean the derivatives with respect to x. The
correct functions R, R/A can be obtained by the
differential approximation only if the second terms
—ie. D or (R¥R’), (R¥}/A)/(R/AY (or all) - equal
zero. The condition D =0 is fulfilled in the special
case when the so-called compensation effect [17]
is very strong, ie. when E4 and y simultaneously
increase or decrease; their changes have the oppo-
site influence on ». More promising is the behaviour
of R*/(R)', (R*/A)/(R/A). Making use of the analytic
expressions for R, A ((7a), (7b)) and the derivatives

R _pl—* * 21
dx [(1+x)2_exp Tox) L +x)+°‘]}

d(R/4) o ox
d_x=(a+2)(1+x)zeXp<1+x>’ (14)

we can easily show that R*/R’, (R*/A)/(R/A) go to
zero at both edges of the spectrum; they decrease
faster than the functions dR/dx or d(R/A4)/dx them-
selves. If D is not too large the second terms in
(13) cease and the derivatives dr/dT, d(r/@7)/dT
go to the “constant parameters” values; so we can
expect that the fitting will go to the “correct”
functions R, R/A. The parameters if extrapolated
to O =0, Or=Or, will then reach their proper
values.

The results of the differential fitting of the
spectrum with @ = 1 are presented in Figs. 3a-3¢
for both fitting procedures r with r, R (symbols)
and r/Or with (1/T;,)(R/4) (symbols and lines).
A similar procedure has been carried out for
Or,=0.5. A new variable, +56;, has been intro-
duced which seems to be more convenient than @y
or T for the extrapolation of «, E,4, and y to
Or = Or, and to O = 0: 6Oy represents the change
of Or on the interval 6T and goes to zero at both
ends of the spectrum. The artificial introduction of
signs allows us to differentiate between the case
Or—0and O, 0Or,.

We can see that at the high-temperature end
(67— 0) all parameters reach the input values. In
the low-temperature part of the spectrum, the
deviations in the derivatives still lead to errors in
the parameters if obtained by fitting » with r, R.
Although the change in @7 is very slow at this end
of the spectrum and E,4 and y are nearly constant
the extrapolated parameters differ from the input

40.

Alpha

201

Preexponential factor

EE
1E+055 % o
1E+04 §
1E+03§ ? input value :
1E+02 T t T
-0.1 -0.05 0 0.05 0.1
Gr = 6y, 60 0«6

Fig. 3. Parameters « (a), E,4 (b), and y (c) versus +60,. The
results of the differential approximation of the spectrum with
Or, = 1. The sign minus holds for T< T, plus for T> T,,. The
parameters are extrapolated to 6@p=0, ie. Or— 0, and
@T—)O.

ones. The only exception makes E4 which is less
sensitive to the deviations — maybe because of the
logarithmic relation to r. The application of the
alternative in which /0y is fitted with (1/T;,)(R/A4)
shifts the extrapolated parameters quite close to
the input values. As the rates of decrease of second
terms in both expressions (13) are practically iden-
tical the only explanation for the better results
seem to be in the simpler form (only two param-
eters) of the fitting function (1/T;,)(R/A).

If we can assume that E4 as well as y changes
with @7 monotonously (as it is in many cases) all
values of the parameters lie within the limits of
their (extrapolated) values for O = O, and Op =
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Fig. 4. Results of the analysis: Eq(@r) and y(Or). The calcula-
tions have been performed for @p =1, «0)=ou(l})=
34785 (M, +) and for @ =05 o(0)=3477, «(0.5)=
3472 (O, *).

0. If E; and 7y decrease or increase simultaneously
then « also changes monotonously and — as follows
from Egs. (10a), (10b) — only slightly. When the
decrease (increase) of E4 is accompanied by the
increase (decrease) of y the changes of « need not
be monotonous, but they are even less than before
because the variations of E4 and y partly compen-
sate each other.

With the assumption of monotonous changes of
Eq4, y, and o the values E4(Or, ), E4(0) ete. represent
the limits of all values belonging to arbitrary
coverage between 0 and Or,. It follows that the
parameter which reaches the same value at both
ends of the spectrum can be considered as a
constant. We can use it as an information supple-
mentary to Eq. (5) and calculate proper values of
other parameters at every point (n@r) of the
spectrum. If « is the constant E4(@r) and p(Oy) are
to be calculated. To do it we first determine
numerically T,,(¢,0r) from the experimental value
r/@7 with the help of (11); then the relations (9) are
used. If E4 or y are constant we can use Eq. (5) and
directly determine the complementary parameter.

If all — o, Eg4, and y — depend on O we take the
parameter with the least relative difference in its
border values. The procedure described above if
carried out for both border values gives now only

the limits of regions in which the remaining two
parameters can be found.

In our case, the fitting with (1/7,)(R/A) gave
border values of & which exhibit a very low disper-
sion: 34.72 and 34.77 for O, =0.5, 3479 and 34.78
for @r,=1. o has then been chosen as a nearly
constant parameter. Eq and y have been calculated
as functions of the coverage from both spectra and
for all border values of « and compared to the
input functions Eq=1.38(1—-0.107)eV and y=
10 K~ Fig. 4 demonstrates the results of our
calculations.

4.1.3. Different adsorption sites, Eq and v const.
When adsorbate particles occupy adsorption
sites characterized by different energies of desorp-
tion Ey; and preexponential factors y; several peaks
can occur on the spectrum. If the desorption from
different sites runs independently the total desorp-
tion rate can be expressed as a sum of rates from
individual types of sites. The components are ruled
by (5) with Or;, Eg;, and y;; Or; is the coverage of
the respective type of sites. A detailed analysis is
given in Refs. [1] and [6]. The situation can be
much easier to solve if the difference between the
desorption energies is so large than some parts of
the spectrum correspond to only one pair of con-
stant parameters. The application of differential

1.2

114 Y2aev, 1380V

4
0.9+ sum
0.8
0.7+

constant
0.6- perameters !

051 i
0.41 !
0.31
0.21

0.1 A
P

Desorption rate [a.u.]

0 T T T = T ""t T T

320 340 360 380 400 420 440 460 480 500
TIKI

Fig. 5. Spectrum for two different types of adsorption sites.

Heavy lines are the regions of constant parameters (taken
from Fig. 6).
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Fig. 6. Parameters obtained by the differential fitting of the
spectrum in Fig. 5. The regions of constant parameters
correspond to the desorption from one type of adsorption
positions.

fitting can reveal the values of the parameters and
also the initial coverage of the corresponding sites,
Obtaining this data, we can construct the respective
spectrum, subtract it from the total profile and try
to continue in this procedure.

As a trivial example, a spectrum consisting of
two peaks is analyzed (energies 1.23 and 1.38 ¢V,
preexponential factor 10** K ™!, initial coverages
Or,; = Or,, = 0.5; Fig. 5). The parameters resulting
from the differential fitting have constant values
at both edges of the spectrum (Fig. 6), the agree-
ment between them and the input values is quite
satisfying.

4.2. Experimental spectra

As an illustration, the analysis of some experi-
mentally obtained TDS spectra has been carried
out. As examples the spectra of CO desorbed from
a single crystal Pd(111) [14] has been taken. The
spectra were obtained from the experiments per-
formed in an UHV system with a base pressure
<3 x 107® Pa; the CO exposure at the room tem-
perature was made by means of a molecular beam
doser. A linear heating rate (f =35.1 K/s) has been
achieved with the thermoelectric programmer. The
apparatus is described elsewhere [16].

Many studies of the CO/Pd system can be found

in the literature (e.g. Refs. [16,17] and references
therein). The assumption of the first order kinetics
of desorption from a CO/Pd single crystal is usual.
The changes in the shape and peak position of
the desorption spectrum which accompany the
increase in the initial coverage may be ascribed
to the adsorbate lateral interactions and to the
multiple adsorption sites. The satisfactory descrip-
tion of the desorption process by constant E4 and
v, can be expressed only if the initial coverage is
very low.

This situation is demonstrated in Figs. 7a and
7b where the spectra with different initial coverages
are presented (symbols) together with their
approximation by 7, R (lines). The spectrum in
Fig. 7a corresponds to the initial coverage @, =
7% 1073@,,,, the spectrum in Fig. 7b started from
the saturation coverage @,,.

The approximation of the spectrum in Fig. 7a
has given a very good result — a correlation coeffi-
cient of 0.99991 and a standard deviation 0.6% of
the maximum value (r,) which is comparable with
the experimental error. The resulting values of the
parameters are quite realisticc «=37.6, T,, =
5423K, r,=1622, ie. E;=176eV and v,=

Partial pressure [a.u.}
|
{
¥
l
}

X!
. ook
300 350 400 450 500 850 600
TIKl

Fig. 7. TDS spectra of CO desorbed from Pd(111). (a) Exposure
from a residual gas atmosphere, coverage 7 x 10730, (mark-
ers); approximation (line) gives the parameters «=37.6,
T,=5423K, r,=1622, ie. Eg=176¢eV, v="755x 10¥s7%,
(b) Exposure 1073 Pa s, coverage @, = 0,,, (markers); approxi-
mation (line): « = 7.6, T, =481.1 K, r, = 7373, i.e. B4 =0.32 ¢V,
v =161s5"1,
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Fig. 8. Parameters «, logy, Ed., and @, obtained from the
differential approximation of the experimental TDS spectrum
with @, =7 x 107%@,,, in dependence on the relative coverage
60/6,.

7.55 x 10%3 s~ 1. The values can be compared with
results presented in Ref. [17] for CO on Pd(111),
TTPD method, adsorption temperatures 87 and
200 K: E4 and v, given there for the same coverage
are ~1.6eV and ~1 x 10*° s71, respectively. As it
was expected the spectrum for the saturation cover-
age (Fig. 7b) where E4 and v, very probably are
not constant has been fitted with a worse correla-
tion coefficient — 0.996 — and a larger standard
deviation — about 5% of the maximum value. The
results E;=0.32eV, v,=161s"" differs signifi-
cantly from those given in Ref. [17] (Eq = 0.56 €V,
v 107s71),

In Fig. 8, the results of the differential fitting of
the spectrum from Fig. 7a are demonstrated. The
parameters obtained are constant along the whole
spectrum within an error of 5-15%. Their mean
values are oo = 37.75+ 0.24,logy =152+ 0.10 (v, =
(92+04)x 101s71), E4=178£001eV, Oy=
(7.03 +0.008) x 107%0,,,.

5. Summary

A desorption process in which identical adsorp-
tion sites take part is usually described by the
Polanyi-Wigner equation. When the properties of
a vacuum chamber in which the process is investi-
gated save the proportionality between the desorp-
tion rate and the pressure increase and when the

increase of temperature T provoking the desorp-
tion is linear in time (with the rate f) some
simplifications are possible. At least for the first-
order kinetics the change of variables from time to
temperature does not change the form of the
equation; only the preexponential factor is now
y=v/p.

If the process is characterized by constant kinetic
parameters the desorption rate r versus T can be
expressed analytically. To do so we rearrange the
Redhead approximation of the Polanyi-Wigner
equation and fit it to the real spectrum. The
rearrangement gives us the reduced desorption
peak R(xx) in which R represents the reduced
desorption rate and x is a dimensionless variable
— the reduced temperature centered about the peak
maximum position, T,,. The dimensionless parame-
ter o is given by the ratio of the desorption energy
E4 to kT, and determines the width of the peak.
Analytic expressions for the peak area (total or
partial) and, of course, for the derivatives of R are
also attainable. The fitting procedure gives values
of three parameters: o, T, and the proportionality
factor r.; the first two determine unambiguously
E,; and the preexponential factor y. We can fit the
whole spectrum (“integral” approximation) or only
small parts of it (“differential” approximation);
the second — when done by turns for the whole
spectrum — can confirm (or argue against) the
invariability of the parameters.

The differential fitting can be even more helpful
if the parameters change their values with surface
coverage or if several types of adsorption sites are
present. In the last case, the desorption peak
represents a sum of individual peaks if the condi-
tion is fulfilled that the desorption from different
sites runs independently. With the differential fit-
ting the part of the total spectrum can be made
visible where the desorption from one type of sites
prevails. The relative number of these sites can be
obtained as well.

When the parameters are dependent on the
surface coverage the differential fitting gives false
values except at the ends of the spectrum. If there
is a ground to assume that the parameters change
monotonously with @ then their boundary values
make limits for all values possible. Taking the
quantity from the triad «, E4, T, which exhibits
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the smallest relative difference in its boundary
values we can determine — or at least estimate —
the dependence on @ for the remaining two
parameters.
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