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The surface energy of metals
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Abstract

We have used density functional theory to establish a database of surface energies for low index surfaces of 60 metals in the
periodic table. The data may be used as a consistent starting point for models of surface science phenomena. The accuracy of the
database is established in a comparison with other density functional theory results and the calculated surface energy anisotropies
are applied in a determination of the equilibrium shape of nano-crystals of Fe, Cu, Mo, Ta, Pt and Pb. © 1998 Elsevier Science
B.V. All rights reserved.
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1. Introduction tion as to the surface energy of a particular surface
facet. Except for the classic measurements on Pb

The surface energy c defined as the surface and In [3,4] there are to our knowledge no direct
excess free energy per unit area of a particular experimental determinations of the anisotropy in
crystal facet is one of the basic quantities in surface the surface energy of solids. A theoretical determi-
physics. It determines the equilibrium shape of nation of the surface energy is therefore of vital
mezoscopic crystals, it plays an important role in importance.
faceting, roughening, and crystal growth phen- During the last decade there have been many
omena, and may be used to estimate surface segre- calculations of the surface energy of metals either
gation in binary alloys. Most of the experimental from first-principles [5–7] or by semi-empirical
surface energy data [1,2] stems from surface ten- methods [8]. The latter are of course computation-
sion measurements in the liquid phase extrapolated ally highly efficient and in many cases provide a
to zero temperature. Although these data at pre- good description of the energetics of surfaces.
sent form the most comprehensive experimental Hence, they have been used with great success to
source of surface energies they include uncertain- study and understand trends. In contrast, most
ties of unknown magnitude and correspond to an first-principles methods are computationally
isotropic crystal. Hence, they do not yield informa- demanding and have typically been used only for

particular cases, focusing on a few elements or on
a special application for a given metal surface.* Corresponding author. Tel.: (+45) 45 88 24 88;

fax: (+45) 45 93 23 99; e-mail: skriver@fysik.dtu.dk However, recently Methfessel et al. [5] have used
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the full potential linear muffin-tin orbitals (LMTO) calculate the surface energies of the 4d metals in
method to investigate the trends in the surface the LDA as well as the GGA assuming a close
energy, work function, and surface relaxation in packed fcc (111) surface and compare the results
the bcc and fcc 4d transition metals. Concurrently, with the isotropic experimental results [2].
Skriver and co-workers [6,7,9,10] used the Green’s
function LMTO method [11] in the atomic-sphere 2.1. Full charge density scheme for surfaces
approximation (ASA) to calculate the surface
energy and work function of most of the elemental The FCD method is based on density functional
metals including the light actinides. In all of these theory [16 ]. The Kohn–Sham one-electron equa-
first-principles calculations little attention has been tions are solved by means of the extremely efficient
paid to the dependence of the surface energy on tight-binding LMTO method in the ASA [17–20].
the orientation of the surface facets and hence The complete non-spherically symmetric charge
there is at present no comprehensive first-principles density n(r) is constructed from the output of a
database for surface energy anisotopies. It is the self-consistent Green’s function LMTO-ASA cal-
aim of the present paper to fill this gap. culation and normalized within space-filling non-

Our starting point is the well-established fact overlapping cells centered around each atomic site.
that density functional theory (DFT), either in the The total density so constructed is continuous and
local density approximation (LDA) or the general- continuously differentiable in all space [15]. It was
ized gradient approximation (GGA), yields shown by Andersen et al. [21] that the full charge
ground state properties of metals in close density obtained on the basis of a spherically
agreement with experimental observations. Hence, symmetric self-consistent calculation is close to the
by using the LDA and GGA for all metals in the density obtained using a full potential method even
periodic table we should be able to form a consis- for open structures such as diamond. Therefore,
tent and accurate database of surface energies we expect the total energy functional evaluated
including the anisotropies for which there are few

from the full charge density derived by an LMTO-experimental observations. Given the LDA or the
ASA calculation to be a very good approximationGGA we need to be able to solve the one-electron
to the total energy of the system.problem accurately and efficiently if we are to

The Hartree and exchange-correlation parts ofcover most of the periodic table for a multitude of
the FCD energy functional EFCD [n] are calculatedsurface facets. To this end we apply the recently
exactly from the charge density n(r) using the LDAdeveloped full charge density (FCD) LMTO
or GGA exchange-correlation energy functionals,method [12,13] which was shown to have an
while the kinetic energy is given by theaccuracy comparable with that of the full potential
Kohn–Sham kinetic energy obtained from themethods. To establish the accuracy for the present
LMTO-ASA equations corrected by a term due topurpose we compare our surface energies for the
the non-spherically symmetric part of the charge4d transition metals with the full potential calcula-
density neglected in the self-consistency procedure.tions [5] and find close agreement between the two
This correction is evaluated in terms of a gradientsets of results. We therefore expect our calculated
expansion around the spherically symmetric chargedatabase of surface energies to reflect the true
density using the functional form for the kineticDFT result.
energy of noninteracting particles [16 ], as
described in Ref. [13]. Thereby, the FCD method
retains most of the simplicity and the computa-2. Computational method
tional efficiency of the LMTO-ASA method, but
attains an accuracy comparable with that of theA full description of the FCD method may be
full potential methods as demonstrated in thefound in Refs. [13–15]. Here, we outline the impor-
successful calculations of the bulk ground statetant numerical details and establish the accuracy
properties, including the shear elastic constants,of the FCD approach through a comparison with

other first-principles LDA calculations. We further for the 4d transition metals and the equilibrium
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volumes of the a-phases of the light 5f metals empty spheres in the surface region (2D) and Na
[12,13,22]. times the total energy per atom in the bulk (3D).

In the application of the FCD method to surface This approach is purely semi-infinite and does not
energy calculations the one-electron equations are rely on a slab or supercell geometry. Further, to
solved by means of the surface Green’s function reduce numerical errors the total energy of the
technique developed by Skriver and Rosengaard bulk EFCD

3D is evaluated by means of a Green’s
[11]. The method correctly accounts for the semi- function technique similar to that used in the
infinite nature of a surface by means of the princi- surface FCD calculations, i.e., all one-electron
pal layer technique [23]. The Dyson equation quantities are obtained by contour integrals of
describing the relaxation of the electronic structure Green’s functions rather than by a conventional
of the surface region is set up and solved within Hamiltonian eigenvalue technique.
the atomic sphere approximation, taking into
account the electrostatic mono- and dipole contri- 2.2. Numerical details
butions to the spherically symmetric one-electron
potential [11]. In the present implementation the In all calculations the one electron equations
relaxation of the surface atomic positions is were solved within the scalar-relativistic and
neglected. According to the first-principles works frozen-core approximations. In the LMTO basis
by Feibelman et al. [24,25] and by Mansfield et al. set we included sp and d orbitals in the case of the
[26 ] the effect of relaxation on the calculated simple metals, and spd and f orbitals in the case
surface energy of a particular crystal facet may of transition metals and light actinides including
vary from 2 to 5% depending on the roughness. Fr and Ra. For In the 4d, for Tl and Pb the 5d,
The semi-empirical results by Rodriguez et al. [8] and for the light actinides the 6p states were treated
show that surface relaxation typically affects the as band states using a second energy panel. The
anisotropy by less than 2% and therefore the valence electrons were treated self-consistently
neglect of relaxations in the present work has little

in the local density approximation with theeffect on the accuracy of the calculated database.
Perdew–Wang parametrization [27] of the resultsSince the surface one-electron potential includes
of Ceperley and Alder [28] for exchange andthe electrostatic dipole contribution, the Kohn–
correlation and to obtain the total energy in theSham kinetic energy obtained within the ASA
generalized gradient approximation the FCD func-implicitly contains the main effect of the semi-
tional included the exchange-correlation functionalinfinite surface [11]. For close packed surfaces the
given by Perdew et al. [29].ASA kinetic energy is therefore a good approxima-

The Dyson equation for the bulk and surfacetion to the exact kinetic energy. In the surface
calculations was solved for 16 complex energyFCD calculations the nonspherical correction to
points distributed exponentially on a semicircularthe ASA surface kinetic energy is estimated by
contour. The k-point sampling in the bulk calcula-means of a second-order gradient expansion of the
tions was performed on a uniform grid, while inkinetic energy functional [16 ]. The actual calcula-
the surface calculations special k-points were usedtions show that this correction becomes important
[30]. The number of k-points in the irreducibleonly for open surfaces and that in most cases only
wedge of the 3D and 2D Brillouin zones for eachdensities of low gradients are involved. Hence,
structure and surface orientation are shown inalthough a density gradient expansion does not in
Table 1. The hcp structure has two (101:0) surfacesgeneral work for the complete kinetic energy we
depending on the first interlayer distance d−10,find that it works well for the correction to the
and in the table (101:0)A refers to the surface withASA kinetic energy.
d−10A =(E3/6)a while (101:0)B denotes the surfaceAt zero temperature the surface excess free
with d−10B =2d−10A . In the calculations the numbersenergy may be calculated as the difference
of atomic layers were chosen such that the relative

c=EFCD
2D (Na+Nv)−NaEFCD

3D (1) error in the surface energy caused by the difference
between the energy of the deepest lying atomicbetween the total energy of Na atoms plus Nv
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Table 1
Number of k-vectors in the irreducible wedge of the three dimensional (3D) and the two dimension (2D) Brillouin zones and number
of atomic (Na) and vacuum (Nv) layers used in the self-consistent calculations. A

2D
is the area of the 2D unit cell and a and c are

lattice parameters

Structure N IBZ−3D
k

Surface A
2D 2D Brillouin zone N IBZ−2D

k
Na Nv

fcc 505 (111) E3/4a2 hexagonal 45 4 2
(100) 1/2a2 square 36 4 2
(110) E2/2a2 rectangular-P 64 6 3

bcc 506 (110) E2/2a2 rectangular-C 64 6 2
(100) a2 square 36 6 3
(211) E3/2a2 rectangular-P 128 8 4
(310) E10/2a2 rectangular-C 128 8 4
(111) E3a2 hexagonal 45 8 4

hcp 225 (0001) E3/2a2 hexagonal 45 4 2
(101:0)A

E8/3a2 rectangular-P 64 8 4
(101:0)B

E8/3a2 rectangular-P 64 8 4

bct 594 (001) a2 square 36 4 2
(110) E2/2ac rectangular-C 64 4 2
(100) ac rectangular-P 64 4 4

sc 455 (100) a2 square 36 4 2
(110) E2a2 rectangular-P 64 6 3

layer and the bulk energy was less than 1%. The of the surface energy of a transition metal series
and of the corresponding surface energy anisot-actual numbers of atomic (Na) and vacuum layers

(Nv) used are shown in the last two columns ropy is carried out by Methfessel et al. [5] in their
full potential (FP) LMTO study of the 4d metals.of Table 1.

The electronic charge density was represented in For the close packed fcc (111) surfaces the compar-
ison between the results obtained by these twoan one-center expansion in terms of spherical

harmonics including terms up to lmax=10 and the methods have been presented in Ref. [14], where
we found a 10% mean deviation in the surfacenormalization of the charge density was ensured

by the technique described in Section IIA of energy over the 4d series. The present implementa-
tion of the FCD method, using the same basis setRef. [14]. The FCD energy functional was eval-

uated by means of the shape function technique and the same exchange-correlation functional as
the full potential calculation, gives a mean devia-using a linear radial mesh between the inscribed

and circumscribed spheres. The conventional tion for the closed packed surfaces similar to that
found in Ref. [14].Madelung terms were calculated up to lmax=8.

For the nearest neighbor cell interaction we used The accuracy of the orientation dependence of
the surface energy may be assessed from Fig. 1the technique described in Refs. [14,31] taking

lmax=30 for the multipole moments. where we compare the FCD anisotropy ratios
c
100

/c
111

and c
110

/c
111

for the 4d transition metals
assuming the fcc structure for the whole series2.3. Comparison with full-potential LDA

calculations with those obtained in the FP-LMTO calculations
by Methfessel et al. [5]. We note that c

100
/c
111

and c
110

/c
111

in the nearest neighbor broken bondTo establish the accuracy of the present method
for metal surfaces we may compare our calculated model are 1.15 and 1.22, respectively and that the

first-principles results shown in the figure deviatesurface energies with other first-principles results.
To our knowledge, the only systematic calculation somewhat from these values. In particular, the



190 L. Vitos et al. / Surface Science 411 (1998) 186–202

istic, and allow the atomic positions at the surface
to relax while the present Green’s function tech-
nique describes a single semi-infinite surface, is
scalar relativistic, and does not include relaxation
of atomic positions. Further, the full potential
calculations utilize a triple spd basis while the
present calculations utilize a single basis but
include the f orbitals as well. Finally, the full
potential method makes use of the Perdew–Zunger
parametrization [32] of the results of Ceperley and
Alder [28] for the exchange-correlation functional
while the present FCD method, for this compari-
son only, uses the Perdew–Wang parametrization
[27] of the same results. With these differences in
mind the agreement between the two calculations
is very good, the mean deviations for c

100
/c
111

and
c
110

/c
111

for the fcc surfaces over the 4d period
being around 5% and 6%, respectively.

The largest deviation between the two sets of
calculations is found in Mo where an anomalous

Fig. 1. Comparison of the FCD surface energy anisotropies for surface relaxation causes a substantial reduction
the low index fcc surfaces of the 4d elements with the full-

in the surface energy of the (100) and (110) facetspotential slab calculation by Methfessel et al. [5]. The thin
in the full potential calculations. However, Modashed lines indicate the values obtained in the nearest neighbor

broken bond model. Note that the results shown in the figure forms in the bcc structure and for this the two
are LDA results calculated for comparison only. They are methods yields c

100
/c
110

values that agree within
approximately 1% larger than the corresponding GGA results

1%. For the other bcc metal Nb our anisotropy islisted in Table 6.
substantially lower than that obtained in the full

elements Mo–Pd exhibit an increased c
100

/c
111

but potential LMTO calculation but in this case the
a reduced c

110
/c
111

relative to the broken bond full potential linear augmented plane wave
model. This may be explained in terms of the pair- (LAPW ) calculation by Weinert et al. [33] gives
potential expansion, to be introduced in Section 4. c

100
/c
110

=1.07 which compares well with our value
In this expansion the next-nearest neighbor poten- of 1.06 and with the similarly low anisotropy we
tials are negative which, coupled with the fact that find for V and Ta (see Section 3.2).
the number of broken next-nearest neighbor bonds
for the (100) and the (110) surfaces is 2 and 4,
respectively, leads to the deviations from the near-

2.4. LDA versus GGAest neighbor broken bond model observed in Fig. 1
for Mo–Pd.

The most significant assumption in the FCDIn the comparison one should note that the full
calculations is the approximate functional formpotential calculations rely on a slab supercell
for the exchange and correlation energy. In mostgeometry with 7 metallic layers which may be
density functional calculations some form of localinsufficient for the open surfaces1, are non-relativ-
density approximation is used with great success

1 To obtain convergence we use in the present calculations to describe ground state properties of a wide range
from 4 to 8 metallic layers, see Table 1, which have the correct of bulk and surface systems. For surfaces the
boundary condition at the vacuum and bulk interfaces. A sim- accuracy of the LDA was studied within the self-ilar convergence in terms of the number of metallic layers in a

consistent jellium surface model by Perdew et al.slab supercell method needs approximately 8 to 16 metallic
layer. [34], and good agreement was found with the
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experimental result2, especially for slowly varying
density profiles. Its success was ascribed to a
cancellation between the errors in the exchange
and correlation energies. The gradient correction
to the LDA [29,34] represents an important
improvement for the correlation part, but it under-
estimates the exchange energy, and as a conse-
quence it gives surface energies which are 7–16%
lower than the LDA values for jellium and 16–29%
lower than the experimental results [34]. On these
grounds one may therefore prefer the LDA results
in the database. However, since the study by
Perdew et al. of the validity of the LDA and GGA
for surfaces is based on the jellium model which
at best is only applicable to simple metals one
needs to compare surface energies obtained for a
larger range of real metals before judging the
relative merits of the two approximations to den-
sity functional theory.

Before comparing LDA and GGA results we Fig. 2. Upper panel: surface energy versus Wigner–Seitz radius
must address the question of the atomic volume for a Ru fcc (111) surface. Lower panel: total energy per atom

versus Wigner–Seitz radius for bulk (EFCD
3D ) and for the atomsused in the calculations of the surface energy. In

in the surface region (EFCD
2D (N )/N) for fcc Ru.the lower panel of Fig. 2 we show the total energy

versus Wigner–Seitz radius for a bulk atom
(EFCD
3D

) and the energy per atom of the atoms in
the surface region (EFCD

2D
(N)/N) of fcc (111) Ru.

The difference between these two energies is the
surface energy, as defined in Eq. (1), and this is
plotted in the upper panel. Inspection of these
figures shows that the calculated surface energies
depend sensitively on the volume of the underlying
bulk lattice and therefore it is important that in
the LDA-GGA comparison the calculations are
performed at the proper equilibrium volumes.
Keeping the volume fixed at the LDA value we
find that the mean deviation between the LDA
and GGA results along the 4d series including Rb
and Sr is about 10%. Repeating the GGA calcula-
tions at the GGA equilibrium volumes the mean
deviation decreases to 6%. It is the results obtained
at the proper LDA and GGA volumes which are

Fig. 3. Comparison of the FCD-LDA and FCD-GGA surfaceplotted in Fig. 3. As one may see, the effect of the
energies for the fcc (111) surface of the 4d metals including RbGGA over the LDA is rather small for the simple
and Sr.

2 The ‘‘experimental’’ values used in the comparison with the
metals, e.g. for Rb and Sr the deviation is 5 andjellium surface energy of Ref. [34] were obtained from the
3%, respectively, which is much lower than theexperimental values for the corresponding simple metal [1]

divided by the corrugation factor of 1.2 as defined in Ref. [35]. 7–16% found in the jellium calculations, but it
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increases to approximately 20% in Pd and Ag at for c
100

/c
111

, c
110

/c
111

in the fcc metals and for
c
100

/c
110

in the bcc metals.the end of the 4d series.
In the comparison between the theoretical fcc

(111) surface energies plotted in Fig. 3 and the
isotropic values derived from experiment [2] we 3. Results and discussion
find that on average the LDA results are 8% larger
and the GGA results 7% lower than the experimen- The present surface energy results are shown in

Tables 2–8 in eV atom−1 as well as in J m−2. Fortal results. Therefore, since the GGA yields mar-
ginally better surface energies and substantially comparison we also present the available full

potential results and two sets of experimentallybetter atomic equilibrium volumes relative to
experiments all the surface energies from the pre- derived values. All the full potential calculations

shown in the tables employ an LDA exchange-sent work presented in Tables 2–8 have been
obtained by means of the most recent GGA correlation functional. Almost all FCD calcula-

tions have been performed in the measured lowexchange-correlation functional [29] at the theoret-
ical GGA equilibrium volumes determined in a temperature equilibrium crystal structures but in

few cases where the a-phase has a lower symmetryseries of bulk calculations using the same Green’s
function technique as in the surface calculations. than body centered tetragonal (bct) we consider

instead a high-pressure phase or a close packedFinally we note that the effect of the gradient
correction to the LDA increases with the roughness fcc (111) surface. In the tables these structures are

indicated by an asterisk. For the hcp metals weand as a consequence reduces the surface energy
anisotropy. The effect is found to be about 1% have assumed an ideal c/a ratio with the exception

Table 2
Surface energies for the monovalent sp metals calculated by the FCD method in the GGA. For comparison we have included the
available full potential and experimental results. The calculated equilibrium lattice constants a are listed in the second column

Structure (a (Å)) Surface FCD (eV atom−1) FCD (J m−2) FP (J m−2) Experiment (J m−2)
Li bcc (110) 0.289 0.556 0.545 a 0.522 b, 0.525 c

(3.431) (100) 0.383 0.522 0.506 a
(111) 0.750 0.590 0.623 a

Na bcc (110) 0.197 0.253 0.261 b, 0.260 c
(4.197) (100) 0.290 0.264

(111) 0.546 0.287

K bcc (110) 0.167 0.135 0.145 b, 0.130 c
(5.300) (100) 0.249 0.142

(111) 0.462 0.152

Rb bcc (110) 0.150 0.104 0.117 b, 0.110 c
(5.714) (100) 0.229 0.112

(111) 0.417 0.118

Cs bcc (110) 0.142 0.082 0.095 b, 0.095 c
(6.264) (100) 0.228 0.093

(111) 0.390 0.092

Fr bcc (110) 0.122 0.069
(6.320) (100) 0.202 0.081

(111) 0.346 0.080

a Pseudopotential, Ref. [36 ].
b Experimental, Ref. [1].
c Experimental, Ref. [2].
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Table 3
Surface energies for the divalent sp metals calculated by the FCD method in the GGA. For comparison we have included the available
full potential and experimental results. The calculated equilibrium lattice constants a are listed in the second column

Structure (a (Å)) Surface FCD (eV atom−1) FCD (J m−2) FP (J m−2) Experiment (J m−2)
Ca fcc (111) 0.484 0.567 0.502 a, 0.490 b

(5.624) (100) 0.535 0.542
(110) 0.811 0.582

Sr fcc (111) 0.440 0.428 0.419 a, 0.410 b
(6.169) (100) 0.484 0.408

(110) 0.725 0.432

Ba bcc (110) 0.464 0.376 0.380 a, 0.370 b
(5.289) (100) 0.616 0.353

(111) 1.199 0.397

Ra bcc (110) 0.377 0.296
(5.372) (100) 0.515 0.286

(111) 1.010 0.324

Eu bcc (110) 0.484 0.485 0.450 b
(4.757) (100) 0.653 0.463

(111) 1.282 0.524

Yb fcc (111) 0.423 0.482 0.500 b
(5.697) (100) 0.484 0.478

(110) 0.721 0.503

Be hcp (0001) 0.495 1.834 1.924 c, 2.1 d 1.628 a, 2.700 b
(2.236) (101:0)A 1.083 2.126

(101:0)B 1.626 3.192

Mg hcp (0001) 0.437 0.792 0.641 e 0.785 a, 0.760 b
(3.196) (101:0)A 0.814 0.782

(101:0)B 1.072 1.030

Zn hcp (0001) 0.385 0.989 0.993 a, 0.990 b
(2.684, c/a=1.86)

Cd hcp (0001) 0.300 0.593 0.762 a, 0.740 b
(3.061, c/a=1.89)

Hg hcp* (0001) 0.111 0.165 0.605 a, 0.575 b
(3.528)

a Experimental, Ref. [1].
b Experimental, Ref. [2].
c Full potential LAPW, Ref. [24].
d Pseudopotential, Ref. [37].
e Pseudopotential, Ref. [38].

of Zn and Cd. For these two elements and for the low temperature equilibrium crystal structures and
the experimental values of Ref. [53] is 2.4% in thebct structures we used the experimental [52] c/a

ratios listed in the tables. case of the simple metals and 1.4%, 1.8%, and
2.1% in the case of the 3d, 4d, and 5d transitionThe theoretical GGA equilibrium lattice con-

stants corresponding to the atomic volumes used metals, respectively. In the determination of the
equilibrium volume of the transition metals wein the surface calculations are shown in the second

column in the Tables 2–8. The mean deviations included the 3p, 4p, and 5p states in a second
energy panel, i.e. treated them as semicore states.between these lattice constants obtained for the
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Table 4
Surface energies for the sp metals from Group IIIA–VIA calculated by the FCD method in the GGA. For comparison we have
included the available full potential and experimental results. The calculated equilibrium lattice constants a are listed in the second
column

Structure (a (Å)) Surface FCD (eV atom−1) FCD (J m−2) FP (J m−2) Experiment (J m−2)
Al fcc (111) 0.531 1.199 0.939 a 1.143 b, 1.160 c

(4.049) (100) 0.689 1.347 1.081 a
(110) 0.919 1.271 1.090 a

Ga bct* (001) 0.376 0.661 0.881 b, 1.100 c
(3.018, c/a=1.58) (110) 0.507 0.797

(100) 0.695 0.773

In bct (001) 0.342 0.488 0.700 b, 0.675 c
(3.352, c/a=1.52) (110) 0.422 0.560

(100) 0.632 0.592

Tl hcp (0001) 0.221 0.297 0.602 b, 0.575 c
(3.714) (101:0)A 0.494 0.352

(101:0)B 0.529 0.377

Sn bct (001) 0.387 0.611 0.709 b, 0.675 c
(3.187, c/a=1.83) (110) 0.509 0.620

(100) 0.716 0.616

Pb fcc (111) 0.226 0.321 0.496 d 0.593 b, 0.600 c
(5.113) (100) 0.307 0.377

(110) 0.513 0.445 0.592 d

Sb sc* (100) 0.365 0.608 0.597 b, 0.535 c
(3.102) (110) 0.560 0.659

Bi sc* (100) 0.356 0.537 0.489 b, 0.490 c
(3.257) (110) 0.507 0.541

Po sc (100) 0.306 0.437
(3.349) (110) 0.370 0.373

a Pseudopotential, Ref. [39].
b Experimental, Ref. [1].
c Experimental, Ref. [2].
d Pseudopotential, Ref. [26 ].

However, the inclusion of semicore 3p, 4p, or 5p 3.1. The sp metals
states in the surface part of the calculations affects
the surface energy of the transition metals by less The FCD surface energies of the sp metals for

a number of low-index surfaces are presented inthan 2% and therefore these states were considered
core states in the surface calculations. A further Tables 2–4. Since the a-structure of Ga is ortho-

rhombic with 8 atoms in the unit cell the calcula-approximation in the present calculations is the
neglect of the relaxation of the atomic positions tions have been performed for the high-pressure

bct phase. Furthermore, the a-structure of Sb andwhich may lead to errors of up to a few per cent.
As a result we estimate the combined errors in the Bi may be considered a slightly distorted simple

cubic structure and these metals have thereforepresent surface energies to be 2–5% depending on
the surface roughness and 2% in the surface energy been treated in the sc structure, while Sn has been

calculated in the bct phase of metallic white tin.anisotropy, both relative to an exact density func-
tional, LDA or GGA, calculation. The surface energy anisotropies of the monova-
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Table 5
Surface energies for the 3d metals calculated by the FCD method in the GGA. For comparison we have included the available full
potential and experimental results. The calculated equilibrium lattice constants a are listed in the second column

Structure (a (Å)) Surface FCD (eV atom−1) FCD (J m−2) FP (J m−2) Experiment (J m−2)
Sc hcp (0001) 1.080 1.834 1.275 a

(3.300) (101:0)A 1.694 1.526
(101:0)B 2.011 1.812

Ti hcp (0001) 1.234 2.632 2.194 b 1.989 c,2.100 a
(2.945) (101:0)A 2.224 2.516

(101:0)B 2.435 2.754

V bcc (110) 1.312 3.258 2.622 c,2.550 a
(3.021) (100) 1.725 3.028 3.18 d

(211) 2.402 3.443
(310) 2.921 3.244
(111) 3.494 3.541

Cr bcc* (110) 1.258 3.505 2.354 c,2.300 a
(2.852) (100) 2.020 3.979

(211) 2.420 3.892
(310) 3.030 3.775
(111) 3.626 4.123

Mn fcc* (111) 1.043 3.100 1.543 c,1.600 a
(3.529)

Fe bcc (110) 0.978 2.430 2.417 c,2.475 a
(3.001) (100) 1.265 2.222

(211) 1.804 2.589
(310) 2.153 2.393
(111) 2.694 2.733

Co hcp (0001) 0.961 2.775 2.522 c,2.550 a
(2.532) (101:0)A 1.982 3.035

(101:0)B 2.476 3.791

Ni fcc (111) 0.695 2.011 2.380 c,2.450 a
(3.578) (100) 0.969 2.426

(110) 1.337 2.368

Cu fcc (111) 0.707 1.952 1.94 e 1.790 c,1.825 a
(3.661) (100) 0.906 2.166 1.802 f

(110) 1.323 2.237

a Experimental, Ref. [2].
b Full potential LAPW, Ref. [40].
c Experimental, Ref. [1].
d Full potential LAPW. In the original paper [41], the authors obtained the following results: #5.1 J m−2 for the W (100) surface,
and #3.4 J m−2 for the V (100) surface. The results quoted by us contain a correction that appears in the case of thin-film total-
energy calculation as was pointed out by Boettger [42].
e Full potential LMTO, Ref. [43].
f Modified APW, Ref. [44].

lent metals, with the exception of Li, are in good in the range from 1.04 to 1.13 compared with 1.14
for the jellium model. The FCD calculation for Liagreement with the results obtained within the

jellium model by Perdew [54]. The present GGA gives c
100

/c
110

=0.94, which is lower than the corre-
sponding value obtained in the jellium model. Oncalculations yield for Na, K, Rb, and Cs c

100
/c
110
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Table 6
Surface energies for the 4d metals calculated by the FCD method in the GGA. For comparison we have included the available full
potential and experimental results. The calculated equilibrium lattice constants a are listed in the second column

Structure (a (Å)) Surface FCD (eV atom−1) FCD (J m−2) FP (J m−2) Experiment (J m−2)
Y hcp (0001) 1.077 1.506 1.125 a

(3.638) (101:0)A 1.676 1.243
(101:0)B 2.059 1.527

Zr hcp (0001) 1.288 2.260 2.044 b, 1.729 c 1.909 d, 2.000 a
(3.248) (101:0)A 2.269 2.111

(101:0)B 2.592 2.411

Nb bcc (110) 1.320 2.685 2.36 e, 2.9 f 2.655 d, 2.700 a
(3.338) (100) 1.987 2.858 2.86 e, 3.1 f

(211) 2.410 2.829
(310) 3.145 2.861
(111) 3.668 3.045

Mo bcc (110) 1.534 3.454 3.14 e 2.907 d, 3.000 a
(3.173) (100) 2.410 3.837 3.52 e

(211) 2.738 3.600
(310) 3.601 3.626
(111) 4.068 3.740

Tc hcp (0001) 1.527 3.691 3.150 a
(2.767) (101:0)A 3.040 3.897

(101:0)B 3.893 4.989

Ru hcp (0001) 1.574 3.928 3.0 g, 4.3 g 3.043 d, 3.050 a
(2.723) (101:0)A 3.201 4.236

(101:0)B 3.669 4.856

Rh fcc (111) 1.002 2.472 2.53 e 2.659 d, 2.700 a
(3.873) (100) 1.310 2.799 2.81 e, 2.65 h, 2.592 i

(110) 1.919 2.899 2.88 e

Pd fcc (111) 0.824 1.920 1.64 e 2.003 d, 2.050 a
(3.985) (100) 1.152 2.326 1.86 e, 2.3 f, 2.130 j

(110) 1.559 2.225 1.97 e, 2.5 f

Ag fcc (111) 0.553 1.172 1.21 e 1.246 d, 1.250 a
(4.179) (100) 0.653 1.200 1.21 e, 1.3 f, 1.27 k

(110) 0.953 1.238 1.26 e 1.4 f

a Experimental, Ref. [2].
b Pseudopotential, Ref. [45].
c Full potential LAPW, Ref. [40].
d Experimental, Ref. [1].
e Full potential LMTO, Ref. [5].
f Full potential LAPW, Ref. [33].
g Pseudopotential, Ref. [46 ].
i Full potential LAPW, Ref. [25].
h Pseudopotential, Ref. [47].
j Pseudopotential, Ref. [48].
k Full potential LAPW, Ref. [49].

the other hand our results for Li are in very good For the divalent fcc and bcc metals we find that
the surface energy of the second most close packedagreement with the pseudopotential calculation by

Kokko et al. [36 ]. surface is consistently lower than that of the most
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Table 7
Surface energies for the 5d metals calculated by the FCD method in the GGA. For comparison we have included the available full
potential and experimental results. The calculated equilibrium lattice constants a are listed in the second column

Structure (a (Å)) Surface FCD (eV atom−1) FCD (J m−2) FP (J m−2) Experiment (J m−2)
La hcp* (0001) 0.909 1.121 1.020 a

(3.873) (101:0)A 1.398 0.915
(101:0)B 1.690 1.106

Lu hcp (0001) 1.102 1.604 1.225 a
(3.566) (101:0)A 1.845 1.424

(101:0)B 2.093 1.616

Hf hcp (0001) 1.400 2.472 2.193 b ,2.150 a
(3.237) (101:0)A 2.471 2.314

(101:0)B 2.892 2.709

Ta bcc (110) 1.531 3.084 2.902 b ,3.150 a
(3.354) (100) 2.174 3.097

(211) 2.799 3.256
(310) 3.485 3.139
(111) 4.201 3.455

W bcc (110) 1.806 4.005 3.265 b ,3.675 a
(3.196) (100) 2.955 4.635 4.78 c

(211) 3.261 4.177
(310) 4.338 4.303
(111) 4.916 4.452

Re hcp (0001) 1.781 4.214 3.626 b ,3.600 a
(2.797) (101:0)A 3.689 4.628

(101:0)B 4.770 5.985

Os hcp (0001) 1.869 4.566 3.439 b ,3.450 a
(2.752) (101:0)A 3.874 5.021

(101:0)B 4.595 5.955

Ir fcc (111) 1.225 2.971 3.048 b ,3.000 a
(3.907) (100) 1.772 3.722

(110) 2.428 3.606

Pt fcc (111) 1.004 2.299 2.067 d 2.489 b ,2.475 a
(4.019) (100) 1.378 2.734

(110) 2.009 2.819

Au fcc (111) 0.611 1.283 1.04 e 1.506 b ,1.500 a
(4.198) (100) 0.895 1.627

(110) 1.321 1.700

a Experimental, Ref. [2].
b Experimental, Ref. [1].
c Full potential LAPW; see footnote d of Table 5.
d Pseudopotential, Ref. [50].
e Pseudopotential, Ref. [51].

close packed surface, the ratio being approximately derived and the theoretical results is small. The
exception is hcp Be where the experimentally0.96. From Tables 2 and 3 we find that for most

of the monovalent and divalent metals, where the derived values differ considerably among each
other. However, in this case the present result fortwo sets of experimentally derived data are close,

the relative difference between the experimentally the (0001) surface is in complete agreement with
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Table 8
Surface energies for the 5f metals calculated by the FCD method in the GGA. For comparison we have included the available
experimental results. The calculated equilibrium lattice constants a are listed in the second column

Structure (a (Å)) Surface FCD (eV atom−1) FCD (J m−2) Experiment (J m−2)
Ac fcc (111) 0.786 0.868

(5.786) (100) 0.764 0.732
(110) 1.006 0.681

Th fcc (111) 1.073 1.476 1.500 a
(5.188) (100) 1.233 1.468

(110) 1.722 1.450

Pa bct (110) 1.648 2.902
(3.986, c/a=0.82) (100) 2.075 2.584

(001) 2.638 2.661
fcc* (111) 1.424 2.302
(4.784)

U fcc* (111) 1.367 2.356 1.939 b, 1.900 a
(4.634)

Np fcc* (111) 1.252 2.208
(4.580)

Pu fcc* (111) 1.104 2.007 2.000 a
(4.513)

a Experimental, Ref. [2].
b Experimental, Ref. [1].

the first-principles full potential calculations at zero temperature and therefore the experimental
value of 1.06 for Pb (110) is, at best, a lower[24,37].

The calculated surface energy anisotropies for boundary.
Our results for fcc Al are slightly higher thanthe sp metals from groups IIIA–VIA shown in

Table 6 are higher than those of the mono- and those obtained by Schöchlin et al. [39] who applied
a slab approach in conjunction with the pseudo-divalent metals, especially for fcc Pb where a

particularly strong facet dependence is found. The potential method. However, Schöchlin et al. used
Wigner exchange which for simple metals givesanisotropy for Pb is studied experimentally at

different temperatures by Heyraud and Metois 13–16% lower surface energies [11] than the
Ceperley–Alder exchange-correlation functional[3,4] who find that at T=473 K c

110
/c
111

#1.06
which is substantially lower than our result [28]. We note that the latter functional in the case

of Al gives surface energies that differ from thec
110

/c
111

=1.39 valid at T=0 K. To determine the
surface energy anisotropy Heyraud and Metois GGA values by less than 2%.
reversed the so-called Wulff construction [55]
assuming the surface energy anisotropy to be pro-
portional to the distance from the center to the 3.2. The transition metals
perimeter of the crystallite. However, this
approach neglects entropy effects and cannot yield The FCD surface energies of the 3d, 4d, and 5d

transition metals for a number of low-index sur-surface energies for facets which have such a high
anisotropy that they are not present in the equilib- faces are presented in Tables 5–7. In the calcula-

tions bcc Fe, hcp Co, and fcc Ni are treated asrium shape at low temperature. For Pb (110) the
calculated anisotropy of 1.39 is well beyond 1.22 ferromagnets, i.e. with a spin-polarized exchange-

correlation functional [27], while all other metalswhich is the limit for the existence of a (110) facet
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are treated as paramagnets. For Mn we consider with the (101:0)A and (0001) facets. The anisotropy
of the cubic transition metals will be analyzed inonly the close packed fcc (111) surface.

First we compare our FCD results with the Section 4.
other full potential values and from Tables 5–7 we
observe that in general the agreement is very good. 3.3. The light actinides
However, for Ti (0001) and Zr (0001) the LAPW

The FCD surface energies of the light actinidescalculation of Ref. [40] gives somewhat lower sur-
for a few low-index surfaces are presented inface energies than the present method but the
Table 8. Since the a-structure of U and Np issurface relaxations, which lowers the surface
orthorhombic with 4 and 8 atoms per unit cell,energy compared with the unrelaxed results, found
respectively, and that of Pu is monoclinic with 16in Ref. [40] are substantially larger than the experi-
atoms per unit cell we consider here only the closemental values and therefore the LAPW surface
packed fcc (111) surfaces.energies may be too low. In the case of Ru (0001)

For the 5f metals the agreement between thethe only available pseudopotential calculation [46 ]
experimentally derived and the theoretical valueslists two very different values for the surface
is very good. The only prior first-principles calcula-energy, 4.3 and 3.0 J m−2, obtained by different
tion of the close packed fcc (111) surfaces of thebasis sets.
light actinides has been performed by Kollár et al.The increase in the surface energy of the trans-
[7] using an earlier version of the FCD method.ition metals with increasing roughness may be
The present surface energies of U, Np, and Pu arequalitatively understood in terms of the broken
lower than those of Ref. [7] as a result of thebonds model. It may even be described semi-
neglect of the higher l charge distribution in thequantitatively by means of a moment expansion
previous work. We note that the effect of the GGAof the state density as was done in the pioneering
for these surface energies is about 5% comparedwork by Cyrot-Lackmann [56 ]. As we shall see in
with the LDA values.Section 3.3, the interactions in a transition metal

The anisotropies of Ac and Th are very close toare quite accurately described by only pairwise
those found in the early transition metals. In theinteratomic potentials [57,58] and therefore the
case of bct Pa, where the f electrons already playmain contribution to the surface energies of these
an important role, the most close packed (110)metals comes from the broken bonds at the semi-
facet appears to be the least stable facet.infinite surface. Since the number of such broken

bonds increases as the surface becomes more open
we expect a similar trend in the surface energies.
This trend is indeed exhibited by the present 4. The equilibrium shape of the crystals
results, when expressed in eV atom−1, in perfect
agreement with previous studies [5,6 ]. Owing to a As an example of the application of the database

we use the first-principles surface energies to deter-simultaneous increase in surface area, however,
this behavior cannot be seen in the surface energies mine the equilibrium shape of crystals of nanome-

ter size. This is the shape that minimizes the totalexpressed in J m−2.
In the early hcp transition metals the surface surface energy at constant volume, and at T=0 K

it is completely determined by the anisotropy ofenergy exhibits a weak orientation dependence and
for these elements we find that the (101:0) facets the surface energy [57]. Hence, in the case of weak

anisotropy the equilibrium crystal shape is aare more stable than the most close packed (0001)
facets. Furthermore, the surface energies of the sphere, while in the case of strong anisotropy it

may be a complicated polyhedron.(101:0)B facets of the hcp metals from the middle
of the series are usually 15–30% larger than those The equilibrium shape may be determined by

the so-called Wulff construction [55], whichof the (101:0)A facets. Hence, for these metals the
(101:0)B facet should not be observed experimen- assumes a complete knowledge of the orientation

dependence of the surface energy c(n). In thetally, or only in a very small fraction compared
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present application of the Wulff construction for The polar plots of the surface energies of Fe,
Cu, Mo, Ta, Pt and Pb are shown in Fig. 4. Thethe low-index surfaces we use the first-principles

results from the Tables 4–7, and for the high-index almost spherical shape of a bcc Ta cluster reflects
the weak anisotropy in this metal. In contrast, bccsurfaces we use a cluster expansion of the total

energy based on the low-index first-principles
results. In a cluster expansion one expresses the
total energy of a given crystal as a linear combina-
tion of one-site, two-site, and higher interatomic
potentials [58]. It turns out that for transition
metal surfaces one needs only to include pairwise
interactions to describe the higher-index surfaces
with a reasonable accuracy [57]. We therefore
apply the expansion

c#∑
s

N
s n

s
V (2)
s

(2)

where n
s

is the number of atoms in the coordina-
tion shell s, V (2)

s
the pair potentials of this shell,

and N
s

the number of shells considered in the
expansion.

In Table 9 we compare for a number of fcc and
bcc metals the results obtained by the cluster
expansion with the corresponding first-principles
results. In these calculations we include two nearest
neighbor interactions for the fcc transition metals,
i.e. N fcc

s
=2, and four nearest neighbor interactions

for the bcc transition metals, i.e. Nbcc
s

=4, and find
that the relative error in the surface energies of
the next higher-index surfaces obtained using the
cluster expansion is approximately 2.3%. This rela-
tive high accuracy of the cluster expansion
observed in the transition metals may be because
the coefficients of some two- and multi-site inter-

Fig. 4. The calculated equilibrium shape of bcc Ta and Moactions are proportional to the coefficients of the
clusters in the (001) plane, of fcc Pt and Cu clusters in the (110)nearest neighour pairwise interactions, and there-
plane, and of bcc Fe and fcc Pb clusters in the (001) and (110)fore implicitly included in our expansion. The
planes, respectively. The dashed lines indicate the directions for

12.1% relative error for Pb shows that for simple which first-principles calculations were performed. The thin
metals the zeroth-order or volume term [58], lines denote the results of the cluster expansion and the heavy

lines the theoretical equilibrium crystal shapes.neglected in Eq. (2), should be taken into account.

Table 9
Comparison of the surface energies (in eV atom−1 units) calculated using the FCD method and the cluster expansion, Eq. (2)

Method Pt Cu Pb Ta Mo Fe

FCD 2.009 1.323 0.513 4.201 4.068 2.694
Cluster expansion 2.047 1.377 0.458 4.136 4.127 2.613
Percentage error 1.9 3.9 12.1 1.6 1.4 3.1
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Mo exhibits a stronger anisotropy and forms in a to predict the equilibrium shapes of nano-crystals
of a few selected metallic elements.nearly cubic shape with truncated corners. The

equilibrium shape of Pt includes only the (111)
and (100) facets. Owing to the relative low value
of c

110
in Cu a small fraction of the (110) facet is
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